Automating Linux Memory Capture

Hal Pomeranz
Deer Run Associates

ENGAGE DEMO!

Why Memory Forensics?

- Detect malware and rootkits
- Defeat encryption
- Speed up analysis

Memory Analysis Challenges

- Need to load a driver to capture RAM
- Need to locate kernel data structures

- Incredibly OS version dependent
- Small changes break analysis tools

Why Is Linux Hard?

Too Many Kernels!

Linux Memory Acquisition

(the short summary)

- Obtain driver source code
- Build driver for target system (Where?)
- Obtain administrative access on target system
- Determine RAM capture destination:
 - Portable device: attach and mount
 - Network: configure remote destination
- Load driver
- Initiate capture

Linux Analysis Profile Creation

Dependencies: Volatility™, dwarfdump, appropriate kernel build environment...

- Dump locations of kernel data structures
- Obtain symbol table for target kernel
- Create profile archive (ZIP file)
- Determine appropriate profile name/location

We Need Leverage!

"Smart people could handle these steps"

- Smart people should be doing analysis
- Smart people may not be available

Leverage

- Contains 3rd-party dependencies:
 - LiME kernel module source
 - dwarfdump
 - Volatility™
- Hal's "Img" script:
 - Builds LiME
 - Captures RAM to USB device
 - Creates Volatility™ profile

Issues of Purity

- Attaching writable media to target
- Development environment required on target
- Executing programs from target OS
- Creates memory artifacts of its own

BACK TO DEMO!

Last Chance for Questions!

The tool – https://github.com/halpomeranz/lmg
Other stuff –

http://deer-run.com/~hal/

http://digital-forensics.sans.org/blog/author/halpomeranz/

Hal Pomeranz

@hal_pomeranz

Deer Run Associates

hal@deer-run.com