
Detecting Malware With
Memory Forensics

Hal Pomeranz

SANS Institute

Why Memory Forensics?

Everything in the OS traverses RAM
ÅProcesses and threads

ÅMalware (including rootkit technologies)

ÅNetwork sockets, URLs, IP addresses

ÅOpen files

ÅUser generated content

ïPasswords, caches, clipboards

ÅEncryption keys

ÅHardware and software configuration

ÅWindows registry keys and event logs

Memory Analysis Advantages

ÅBest place to identify malicious software activity
ïStudy running system configuration

ï Identify inconsistencies (contradictions) in system

ïBypass packers, binary obfuscators, rootkits (including kernel mode)
and other hiding tools.

ÅAnalyze and track recent activity on the system
ï Identify all recent activity ς in context

ïProfile user or attacker activities

ÅCollect evidence that cannot be found anywhere else
ïMemory-only malware

ïChat threads

ï Internet activities

What is Memory Forensics?

ÅStudy of data captured from memory of a target system

Å Ideal analysis includes physical memory data (from RAM) as
well as Page File (or SWAP space) data

Acquire

ωCapture Raw Memory

ωHibernation File

Context

ωEstablish Context

ωFind Key Memory Offsets

Analyze

ωAnalyze Data For Significant Elements

ωRecover Evidence

Windows Memory Acquisition

Å LIVE System (RAM Acquisition)

ÅDumpIt.exe

ïhttp://www.moonsols.com/2011/07/18/moonsols-dumpit-goes-mainstream/

Åwin32dd.exe / win64dd.exe

ïAuthor: Matthew Suiche

ïhttp://www.moonsols.com/products/

ÅMandiant Redline

ïhttp://www.mandiant.com/products/free_software/redline/

Å DEAD System
ï Hibernation File

ÅContains a compressed RAM Image
Å%SystemDrive%/hiberfil.sys

Win2k XP Win2003 VISTA Win2008
Windows

7

Virtual Machine Memory Acquisition

VMware (Fusion/Workstation/Server/Player)

 .vmem file = raw memory image

Microsoft Hyper-V

 .bin file = raw memory image

Parallels

 .mem file = raw memory image

VirtualBox

 .sav file = partial memory image

Extract Memory from Hibernation File
(hiberfil.sys)

Åhibr2bin can acquire physical memory (RAM) from a Windows

hibernation file (XP and VISTA only)

ïPro Version Compatible with XP-Win7/2008 (32 and 64 bit)

hibr2bin.exe <input file> <output file>

Å Location on COURSE DVD:

 D: \ windows forensic tools \ memory imaging \

Å Example: Extract hibernation file memory and save to a USB DRIVE

 D: \ > hibr2bin D: \ hiberfil.sys E: \ hibernation_memory.img

 ** Volatility can also convert hibernation files **

DLL Injection

Normal DLL Interaction

ntdll.dll

Kernel

Library Call

1

2 3

4
User space

Kernel space

DLL Injection

ntdll.dll

Kernel

Library Call

5 4

Rootkit
1

2

3

6

7

User space

Kernel space

Detecting Injection

ÅDLL injection is very common with modern malware
ïVirtualAllocEx() and CreateRemoteThread()

ïSetWindowsHookEx()

ÅProcess hollowing is another injection technique
ïMalware starts a new instance of legitimate process

ïOriginal process code de-allocated and replaced

ïRetains DLLs, handles, data, etc. from original process

ÅCode injection is relatively easy to detect
ïReview memory sections marked as Page_Execute_ReadWrite

and having no memory-mapped file present

ÅScan for DLLs (PE files) and shellcode

ïProcess image not backed with file on disk = process hollowing

Zeus / Zbot Overview

ÅPersistent malware designed to steal credentials

ÅMany variants. A popular one does the following:
ïCopies itself to %system32%\sdra64.exe

ïInjects code into winlogon.exe or explorer.exe
ÅFurther injects code into every process but csrss & smss

ïAuto-start path: HKLM\Software\Microsoft\Windows
NT\winlogon\userinit

ïCreates local.ds & user.ds in %sytem32%\ lowsec\

ïRetrieves files from command and control server

ïMutant: _AVIRA_

ïHooks over 50 system APIs

Using Mandiant Redline

Information Pane

Process View

Host View

Guided Analysis

Detecting Code Injection:
Zeus/Zbot DLL Injection

Detecting Code Injection:
Finding Injected Sections

Volatility

ÅCommand-line memory forensic tool

ÅPrimarily Windows-focused

ÅLinux (Android) & Mac support now available

ÅModular, portable

Help!

Å The ςh flag gives configuration information in Volatility

ïUsed alone it identifies the version, currently loaded plugins, and
common parameters

Å Use ςh with a plugin to get details and plugin-specific usage

Code Injection
ldrmodules

ωDLLs are tracked in three different linked lists for each process. Stealthy
malware can unlink loaded DLLs from these lists. This plugin queries each
list and displays the results for comparison.

Purpose

ω Verbose -- show full paths from each of the three DLL lists (-v)
ω Show information for specific process IDs (-p)

 Important Parameters

ωaƻǎǘ ƭƻŀŘŜŘ 5[[ǎ ǿƛƭƭ ōŜ ƛƴ ŀƭƭ о ƭƛǎǘǎΣ ƘŀǾƛƴƎ ŀ άмέ ƛƴ ŜŀŎƘ ŎƻƭǳƳƴΦ

ωLegitimate entries may be missing in some of the lists

ωŜΦƎΦ ǘƘŜ ǇǊƻŎŜǎǎ ŜȄŜŎǳǘŀōƭŜ ǿƛƭƭ ƴƻǘ ōŜ ǇǊŜǎŜƴǘ ƛƴ ǘƘŜ άLƴLƴƛǘέ ƭƛǎǘ

ωLŦ ŀƴ ŜƴǘǊȅ Ƙŀǎ ƴƻ άaŀǇǇŜŘtŀǘƘέ ƛƴŦƻǊƳŀǘƛƻƴ ƛǘ ƛǎ ƛƴŘƛŎŀǘƛǾŜ ƻŦ ŀƴ ƛƴƧŜŎǘŜŘ
DLL not available on disk (usually bad)

Investigative Notes

Rootkit Detection
apihooks

ωDetect inline and Import Address Table function hooks used by
rootkits to modify and control information returned

Purpose

ωOperate only on these process IDs (-p PID)

ωScan kernel modules instead of user-mode objects (-k)

 Important Parameters

ωA large number of legitimate hooks can exist, weeding them out
takes practice and an eye for looking for anomalies

ωThis plug-in can take a long time to run due to the sheer number
of locations it must query ς be patient!

Investigative Notes

Analyzing Process Objects:
malfind

ωScans process memory sections looking for indications of code injection.
Identified sections are extracted for further analysis.

Purpose

ω Directory to save extracted files (--dump-dir=directory)
ω Show information for specific process IDs (-p PID)
ω Use psscan to find processes = more rigorous (-s)

ω Search using YARA rules (-y YARA rules file)
ω Scan kernel modules/drivers using Yara Rules (-K)

 Important Parameters

ωWhile malfind has an impressive hit rate, false positives do occur

ωDisassembled code provided can be helpful as a sanity check

ωYou may see multiple injected sections within the same process

ωDumped sections can be reverse engineered or sent to A/V

Investigative Notes

