
Unix Command-Line Kung Fu

Hal Pomeranz, Deer Run Associates

All material (except images) Copyright © Hal Pomeranz and Deer Run Associates, 2008-9.

Images property of their respective Copyright holders.

Hal Pomeranz hal@deer-run.com

Deer Run Associates (541)683-8680

PO Box 50638 (541)683-8681 (fax)

Eugene, OR 97405 http://www.deer-run.com/

[I wish to thank everybody who's attended this presentation and given me suggestions for

improving the content. I haven't been able to always get your name/email address to

thank you explicitly in the course notes, but your contributions are appreciated by me and

everybody who uses this course. --Hal]

1

Who Is Hal Pomeranz?

� Independent IT consultant

� Senior Unix Security faculty for SANS Institute

� Earlier episodes:

� First root access: 1987 (Sun 3/160, SunOS 3.4)

� Former board member: BayLISA, BBLISA, USENIX

� SAGE Outstanding Achievement Award recipient

� Technical consultant for CIS Unix security standards

� Last Technical Editor for Sys Admin Magazine

Welcome! My name is Hal Pomeranz and I've been working with Unix systems

professionally since 1987. By the way, when I say "Unix", I mean all Unix-like systems,

including Linux. It's all rock'n'roll to me…

For the last 10 years my wife Laura and I have been running our own consulting practice

(although she claims she's "not technical anymore", my wife was using Unix systems many

years before I was and she's still a mean hand with the vi text editor). I also have the

curious distinction of being the "oldest" current SANS Faculty member (in terms of

longevity with the organization, not by age), having presented my first tutorial for SANS in

1994 and various other talks at SANS conferences from the early '90s. I'm currently the

track lead and primary instructor for SANS' Unix Security certification track (aka SANS

Sec506).

I've been active in the Unix community throughout my career and have served on the

Boards of several different computing and system administration organizations, including

BayLISA (San Francisco Bay Area), BBLISA (Boston), and USENIX. I was the last Technical

Editor for Sys Admin Magazine, from Jan 2004 through Aug 2007 when the magazine

ceased publication. I've also helped to develop many of the existing Unix security

standards, including those from the Center for Internet Security

(http://www.CISecurity.org/). I am also a recipient the annual SAGE Outstanding

Achievement Award for my teaching and leadership in the field of System Administration.

2

Why This Course

� I teach Unix to several hundred people per year and see
them struggling with the command line

� Little tricks provide massive productivity increases

� … really it's all Ed Skoudis' fault!

At SANS Conferences and other venues, I teach various Unix skills to hundreds of students

every year. Many of them are relatively inexperienced with the Unix command line and I

see them getting frustrated or taking round-about approaches to solving problems, when

in reality just knowing a few simple tricks would make them vastly more productive.

I had considered putting a course together to help students learn some of these tricks in a

systematic way, but never seemed to find the time. Then fellow SANS Faculty member Ed

Skoudis developed a course he called Windows Command-Line Kung Fu. Frankly, it was

galling to me that there should be such a course for the Windows folks, and nothing at all

for the folks working with Unix, which is a much more command-line oriented OS. So

thanks, Ed, for your advice in the early stages of this course and for kicking me in the

posterior when I needed it.

Ed and I, along with Paul Asadoorian are now participating in a blog called "Command Line

Kung Fu" (http://blog.commandlinekungfu.com/), where we solve problems and show you

both the Unix and the Windows command-line version. We hope you'll check us out.

3

What This Course?

� This is a "command line" course, not a "scripting" course

� The shell is /bin/bash

� Use only features common to 90% of Unix-like OSes

Before we get to the material, let's establish a few ground rules:

• This is a command-line course, not a scripting course. While sometimes the things you

type on the Unix command-line can come perilously close to scripting, the focus of this

course will be on tools and techniques that you would commonly use for one-shot, "on-

the-fly" kinds of tasks. Also no pre-configured command aliases or other special

environmental settings are assumed, and are expressly against the "rules" for all scripting

challenges presented in the course.

• We will be using the command-line syntax for the Free Software Foundation's bash

shell, which is widely available on all Unix-like operating systems. That being said, the

techniques in this course are almost all portable to ksh and zsh.

• When we're using Unix commands, we will restrict ourselves to standard commands and

command-line options that are present in the default install of the majority of standard

Unix systems. In other words, it's against the "rules" to use esoteric options from the GNU

versions of various commands, even if they are darn useful.

Now that we're clear on the rules, let's have some fun…

4

CLI – History and Tab Completion

� You and your (sordid) history:

� You can "up-arrow"– did you know you can search (^R)?

� Going old school: !! !-2 !47 !$!* !/etc

� Quick substitution: ^foo^bar ^-n

� Tab completion is more helpful than you may know:

� Sure it saves typing, but also…

� Double tab to see list of possibilities

� Tab completion works for program names

When working with the Unix command-line, one of the biggest productivity enhancements

is to take advantage of the various features of your command-line history and the tab-

completion feature in your shell. These features make building up complicated shell

pipelines considerably easier, and save you lots of keystrokes.

Command-Line History

If you've been using the shell for a while, you're probably aware that you can use the up

and down arrows on your keyboard to move backwards and forwards through your history

of previous command lines. But what if you want to re-run a command that you last did

several dozen command-lines ago? Hitting "up arrow" that many times is tedious and

you'll be banging that arrow key so fast that you're likely to "overshoot" and miss the

command line you wanted.

The neat thing about the shell history is that you can search backwards using <Ctrl>-R.

Just hit <Ctrl>-R and then start typing the string that you're looking for– the shell will

show you the most recent matching command line that contains the string you've typed.

You can hit <Ctrl>-R again and (and again and …) you'll be taken further back into your

history of matching command lines. When you've found the command-line you want, just

hit <Enter> to execute the command, or use the normal editing keys to modify the

command-line as desired.

5

Keyboard Accelerators

However, command-line history is a extremely old feature of Unix shells (having first

appeared in the BSD csh back in the 80's. When command-line history was first introduced,

the up/down arrow and backwards searching features were not even conceived of yet.

Instead, there were various keyboard accelerators that have now mostly been forgotten.

Still, these keyboard macros are often substantially faster and easier than using the arrows

and <Ctrl>-R, especially if you're a touch typist and don't particularly care to go reaching

for the arrow keys all the time.

For example, !! repeats the previous command:

$ ls -l /var/log/messages
-rw------- 1 root root 27127 Apr 29 08:32 /var/log/messages

$!!
ls -l /var/log/messages

-rw------- 1 root root 27127 Apr 29 08:32 /var/log/messages

Similarly, !-2 repeats the command before the previous command, and as you might expect

!-3 goes three command lines back, etc. This can be useful when you're repeating the same

sequence of commands over and over, like when you're watching a log file or other fast

growing file to make sure it's not filling up your file system:

$ ls -l /var/log/messages
-rw------- 1 root root 27127 Apr 29 08:32 /var/log/messages

$ df -h /var
Filesystem Size Used Avail Use% Mounted on

/dev/sda3 996M 122M 823M 13% /var

$!-2
ls -l /var/log/messages

-rw------- 1 root root 27127 Apr 29 08:32 /var/log/messages

$!-2
df -h /var

Filesystem Size Used Avail Use% Mounted on

/dev/sda3 996M 122M 823M 13% /var

6

You can also use !!, !-2, etc in the middle of subsequent command lines. For example:

$ ifconfig eth0
-bash: ifconfig: command not found

$ /sbin/!!
/sbin/ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:0C:29:95:AB:90

inet addr:192.168.127.129 Bcast:…

This is also an extremely useful technique when building up long shell pipelines– just keep

using !! and adding little bits of code to the end of the pipeline until you get the results you

want.

History by the Numbers

Every command-line in your history is numbered (you can see the numbers in the left-hand

column when you use the history command) and you can select a particular command-

line using !<n> where <n> is the number of the command:

$ history
…

41 ls -l /var/log/messages

42 df -h /var

43 ifconfig eth0

44 /sbin/ifconfig eth0

45 history

$!41
ls -l /var/log/messages

-rw------- 1 root root 27127 Apr 29 08:32 /var/log/messages

The !<n> syntax is most useful when you find yourself running one particular command over

and over again with a lot of other commands interspersed between executions.

7

Specifying Arguments

There are also keyboard accelerators for extracting particular command-line arguments

from previous command-lines. Perhaps the most useful one is !$ which gets the last

argument from the previous command-line:

co -l named.conf
named.conf,v --> named.conf

revision 1.1 (locked)

done

vi !$
vi named.conf

ci -u !$
ci -u named.conf

named.conf,v <-- named.conf

file is unchanged; reverting to previous revision 1.1

done

Like the previous example, there are any number of times that you will need to do a series

of commands to a single file, and this is where !$ really shines. By the way, you can use

!-2$ to get the last argument from the command-line prior to the previous command-line

(and !-3$, !-4$, and so on also work like you'd expect).

!* gets you all of the previous arguments. This is often useful when you make a typo in

your command name:

cl named.conf named.conf-orig
bash: cl: command not found

cp !*
cp named.conf named.conf-orig

In general, !:<x> will give you the <x>th argument from the previous command-line, but

I don't find this syntax particularly useful. Actually, all of these accelerators we've been

discussing are just degenerate cases of the generalized syntax "!<n>:<x>" (give me the

<x>th argument of command-line <n>).

8

Fast Searching

One last accelerator that's extremely useful is "!<string>", which means execute the

last command-line that begins with <string>. For example, you might do

"/etc/init.d/httpd start" trying to start your web server only to discover that

some misconfiguration is preventing the server from starting. After fixing the problem you

can just do "!/etc" to try starting the server again.

Of course it can be dangerous to just blindly go around doing things like "!/etc" or

whatever. So you can do "!<string>:p" to display (print) the last command-line that

starts with <string> before executing it:

$!/sbin:p
/sbin/ifconfig eth0

$!/sbin
/sbin/ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:0C:29:95:AB:90

inet addr:192.168.127.129 Bcast:…

In the example above, we use "!<string>:p" followed by "!<string>" to execute

the command. But in fact you can just use "!!":

$!/sbin:p
/sbin/ifconfig eth0

$!!
/sbin/ifconfig eth0…

Quick Substitutions

Another boon for people who make lots of typos is the ability to do quick substitutions on

the previous command line using the caret (^) operator. Earlier we used !* to fix things

when we made a typo on a command name, but you can also use the caret for this:

cl named.conf named.conf-orig
bash: cl: command not found

^cl^cp
cp named.conf named.conf-orig

9

The caret operator replaces the first instance of the provided string on the command line,

but only the first (unfortunately there's no global replacement option as there is with sed

or Perl). This is sometimes an annoying limitation:

cp passwd passwd.bak
^passwd^shadow
cp shadow passwd.bak

The above outcome– overwriting the passwd.bak file with a copy of the shadow file– is

probably not what you wanted.

Actually, believe it or not, the following does what you want:

cp passwd passwd.new
!!:gs/passwd/shadow/
cp shadow shadow.new

Rather than using the caret operator, we're using the more general substitution modifier

(":s/…/…/") on the previous command ("!!"). The leading "g" means to apply the

substitution "globally" throughout the entire previous command, rather than to just the

first instance (all you sed and Perl folks are probably boggling now because you're used to

the "g" appearing at the end of the substitution rather than the beginning). The above

syntax is quite a lot to type– I'm not sure it's much faster than just editing the previous

command-line directly.

The "^<string>" syntax is a useful because it simply removes <string> from the

previous command line (basically you're saying replace <string> with an empty string).

I often use this with make or other Unix commands that have a "-n" option for showing

you what would happen if you ran the command. Once you're sure that everything looks

correct, you can quickly strip the "-n" option and actually execute the command:

$ make -n dlstubs
cc dlstubs.c -o dlstubs

$ ^-n
make dlstubs

cc dlstubs.c -o dlstubs

10

Tab Completion

Tab completion really saves you a lot of typing because it quickly fills in pathnames for you

without your having to type the entire string. For example, if you type "ls -l

/var/log/me<Tab>" and the shell would automatically complete the pathname as

/var/log/messages.

However, if you do this you'll probably hear a beep after the shell completes the pathname.

This means that /var/log/messages is the longest unique sequence of characters that

the shell could match, but that there are multiple matching pathnames that begin with

/var/log/messages. At any time you can hit the tab key twice (<Tab><Tab>) to see

all possible completions:

$ ls -l /var/log/messages<Tab><Tab>
messages messages.1 messages.2 messages.3 messages.4

$ ls -l /var/log/messages

Notice that after displaying the different possible matches, the shell puts you back at the

end of the command line you were working on when you hit the double tab.

What many people don't know is that you can also use tab completion with executable

names:

$ ls<Tab><Tab>

ls lsb-release.d lsmod lspcmcia

lsattr lsdiff lsof lspgpot

lsb_release lshal lspci lss16toppm

$ ls

Aside from just saving a few keystrokes, this can also help you remember a command name

you've forgotten.

11

Traversing File Systems w/ find

� By type:
find /dev -type f -print

� By name:
find / -name '.* *' -print

� By size:

find / -size +10000000c –print

� By "last modified time":

find / -mtime –7 –print

find Command Basics

Traversing and searching file systems and directories is a very common operation in Unix.

Normally we use the find command for this, though many Unix commands have a

"recursive" option (typically "-r" or "-R") for operating on an entire directory tree, such as

"rm -r …" or "chown -R …".

The syntax of the find command is a little odd, but it helps if you think of breaking the

arguments into chunks as follows:

find [list of dirs] [search option(s)] [action(s)]

The standard action is "-print" which means to display the names of all files that match

the search option(s). In fact, on most modern versions of find you can leave off the

action specifier and "-print" will be assumed.

12

There are a lot of different search options out there, and in fact different versions of find

on the various Unix flavors will often support search options that may not be supported on

other platforms. That being said, there tends to be a core group of common options that

are universally supported:

• You can use "-type" to look for certain types of objects: "f" means regular files, "d" for

directories, "l" for symlinks, etc. The first example on the slide is a very useful find

command to run if you think your system has been compromised. Many rootkits will put

files into /dev in an attempt to hide them from system admins. However, since regular

files under /dev are not expected (except the MAKEDEV script on some Unix flavors and

various files under /dev/.udev on Linux), the find command shown here can help

pinpoint signs of a break-in.

• You can, of course, find files by name with the "-name" option. Notice that you can use

normal shell globbing characters like "*" in your expressions, but you have to be careful to

quote your search strings so that the shell doesn't try to interpolate the wildcards before

they get to the find command.

• Sometimes searching for files by size can be useful– for example when you're looking for

runaway log files and data files that might be filling up a partition. Or perhaps an attacker

has had a long-running packet sniffer going on your system to capture passwords and you

want to find its capture file. Large files on Unix systems are just not that common. In the

example on the slide we're searching for all files that are larger than (the "+" means

"greater than", "-" means "less than") 10 million bytes ("c" for "character", which is a one-

byte data type).

• Or perhaps after a break-in you might want to get a list of recently modified files. The

example finds all files that have been modified ("-mtime") less than (again "-" generally

means "less than" to find) 7 days ago. While it's possible that the attacker may have

modified your file timestamps back to their original value, many don't bother.

Note that the examples on this slide are taken from Ed Skoudis' excellent Intrusion

Discovery Cheat Sheet for Linux available for free from the SANS Institute

(http://www.sans.org/score/checklists/ID_Linux.pdf). I highly recommend this document

for your operations staff and system admins. There's also a Windows version available

(replace "Linux" with "Windows" in the previous URL).

13

More Fun With find

� Better than one-day granularity (touch and -newer):

touch –t 200801160000 timestamp

find / -newer timestamp -print

� What did that GUI do?
touch /tmp/timestamp

[… do something GUI …]

find / -newer /tmp/timestamp -print

A Trick for Better Time-Based Searches

One of the problems with the "-mtime" option is that it only works in terms of one day

values. But what if you were able to pinpoint the time of your break-in by looking at your

IDS logs (or some other reference point) and know that the break-in occurred 36 hours

ago? Sure, you could do "-mtime -2", but on a busy system that might generate lots of

extra noise.

It turns out that the superuser can use the touch command to set timestamps on files

(which is what attackers do to reset the timestamps on files that they modify) and/or

create new files with arbitrary timestamps. So if you know exactly when your break-in

occurred, just use touch to create a new file with a timestamp that matches the time of

the break-in and then use find with the "-newer" option to find all files with more

recent last modified timestamps.

Note that you can use a similar trick to figure out what's going on under the covers with

some of these GUI-based admin tools that are becoming so prevalent. Just create a

timestamp file before you do the operation with the GUI. When you're done, just find

everything that's been changed since you created your timestamp file.

14

Even More Fun With find

� Names of files containing a particular string (-exec):
find /usr/include –type f \

-exec grep –l PATH_MAX {} \;

� Faster version (xargs):
find /usr/include –type f –print | \

xargs grep –l PATH_MAX

Running Arbitrary Commands ("-exec")

It's often useful to execute a particular command (or set of commands) on the matching

files discovered by find. You can use the "-exec" action for this. Here are a couple of

simple (but useful) examples:

find /tmp -mtime +7 -exec rm –rf {} \;

find /var/log -mtime +7 -exec gzip {} \;

The syntax of -exec is a little weird. After the -exec, you specify the command line you

want to run but you use curly braces ("{}") to indicate where in the command line you want

find to substitute the matching file names. The command after -exec must be

terminated with "\;" (it's possible that you might have other actions or expressions after -

exec, though usually the "\;" is the last thing on the line).

The example on the slide is a useful little expression for displaying the names of files that

contain a particular string– I often use this for searching directories of source code for a

particular item. Normally, of course, grep would display the matching lines, but the "grep

-l" command means "only display the file names".

15

Improving Performance

It turns out that the first find example on the slide is pretty inefficient, because find

will end up running grep on each individual file, which is a whole lot of separate

executions of grep. Instead, you might consider piping the output of "find … -

print" into the xargs program. xargs gobbles up the file names from its standard

input and uses them to construct and execute command lines, subject to the built-in

argument list length limitations in the shell. The result is that the grep command will end

up being executed many fewer times by xargs than it will with the find command.

You can see the performance improvement using the built-in "time" function in the shell,

which is useful for doing quick benchmarks like this:

time find /usr/include -type f \
-exec grep -l PATH_MAX {} \; >/dev/null

real 0m11.488s

user 0m1.570s

sys 0m10.732s

time find /usr/include -type f -print | \
xargs grep -l PATH_MAX >/dev/null

real 0m0.300s

user 0m0.076s

sys 0m0.270s

What's interesting to me is that the "find … | xargs …" example actually appears to

be slightly faster than "grep –rl …":

time grep -rl PATH_MAX /usr/include >/dev/null
real 0m0.437s

user 0m0.074s

sys 0m0.345s

Of course not all versions of Unix ship with a grep command that supports the "-r"

option anyway…

16

Bottoms Up!

� Remove only directories that contain no files:
find . -depth -type d -exec rmdir {} \;

� GNU find makes this even more terse:
find . -type d -empty -delete

Depth-First Traversal

One of our Command Line Kung Fu Blog readers, Bruce Diamond, presented us with an

interesting problem. If you have a directory structure where many of the directories are

empty, can you remove just the empty directories without removing the ones containing

files? The trick is that if removing all of the subdirectories of a given directory leaves that

directory empty then that directory should be cleaned up as well. Basically you want to

start at the bottom of the directory structure and work your way back up, removing empty

directories as you go.

Normally the find command does what's referred to as an "in-order traversal" of the

directory structure– it starts at the top and works its way down each sub-tree. But with

the "-depth" option ("depth-first traversal"), you can force find to start at the bottom of

the directory tree and work its way back up. Since rmdir will only remove empty

directories, using the combination of "-depth" and "-exec rmdir …" is exactly what

we want.

Note that the GNU version of find includes the "-empty" condition and the "-delete"

action, which simplify our command even further, but of course this violates our rule of

using options that are common to most Unix systems. Nevertheless, they're darn useful.

for i in `seq -w 1 12`; do

mkdir –p /archive/logs/$i

done

Loops

for file in *.gz; do

echo ===== $file

zcat $file | grep foo

done

while :; do

netstat –in | grep eth0

sleep 5

done

Loop Constructs

The find program is essentially an interator over directories of files, but sometimes you

need a more general looping construct. bash actually has several different types of loops

available, but we'll just discuss a couple of them here.

The most common type of loop I find myself doing on the command-line is the "foreach"

type of loop that processes a list of file names or other values. As you can see in the first

example, you can use shell wildcard globs to create lists of file names to process. This first

example is an idiom I use frequently for finding a particular string in collections of

compressed/gzipped files. The echo statement outputs an easily recognizable header

before the matching output from each file so that it's easy to see which file(s) the matches

occur in.

In the second example we're using the seq command to generate a list of numeric values

from 01 to 12 (the "-w" option forces seq to produce consistent width values, zero-filling

as necessary). We then use backticks to substitute the output of seq as the list of values

in our for loop

18

Actually, bash has a C-style for loop, so we could do this without seq:

for ((i=0; $i <= 12; i++)); do

mkdir -p /archive/logs/`printf %02d $i`

done

Frankly, I think the version with seq in backticks is a lot clearer, but your mileage may

vary.

Just to tie a bow on this discussion, I should point out that this is really a fairly poor

example since you could do it without a loop at all:

mkdir -p /archive/logs

cd /archive/logs

mkdir `seq -w 1 12`

Sometimes infinite loops are useful. The last example shows an idiom that I use frequently

when I want to monitor the output of a command at regular intervals over a long period of

time. For example, suppose you wanted to watch how much traffic was going out your

ethernet interface. You can use the last loop on the slide to watch the netstat output

for this interface at five second intervals.

19

Variable Substitution Operator

� Changing spaces to underscores:
for f in *; do mv -- "$f" ${f// /_}; done

� Get rid of the error messages:
for f in *; do

n=${f// /_}

[-f $n] || mv – "$f" $n

done

Variable Substitution Operator

Now that we've got loops under our belt, we can start using them for interesting things. In

this case we're going to combine a loop with another useful bash feature: the variable

substitution operator. For example, suppose you had a lot of file names with spaces in

them and you wanted to replace the spaces with underscores to make the files easier to

deal with. In the bad old days, you would have had to do something cumbersome like

calling sed to do the substitution, but bash has a built-in operator for this now.

The basic form of the operator is "${variable/pattern/replacement}", but here we're

adding an extra "/" at the beginning of the pattern which means "replace all instances of

the pattern", as opposed to only replacing the first instance which is the default (if you're

familiar with sed, think of the extra "/" like the "g" operator in sed).

Notice we're careful to use quotes around the unmodified file name variable in the mv

command so that the spaces in the file name don't mess up the command. We've even

included a "--" to indicate to mv that it shouldn't expect any further command-line

options, just on the off chance that the file name we're dealing with happens to start with

a "-".

Unfortunately, there are a couple of problems with our solution:

$ touch 'foo bar' foobar

$ echo foobar >foo_bar

$ for f in *; do mv -- "$f" ${f// /_}; done

mv: `foobar' and `foobar' are the same file

mv: `foo_bar' and `foo_bar' are the same file

$ cat foo_bar

Here I'm creating a directory containing three files: empty files "foo<space>bar" and

"foobar" plus a file called "foo_bar" that contains the string "foobar". Notice that

our loop generates an error for each of the two file names that don't contain a space.

Furthermore, the empty "foo<space>bar" file ends up overwriting the "foo_bar" file,

which is probably not what we want.

So the second form of our loop handles things a bit more carefully. First we use our

variable substitution operator to compute what the new file name should be and tuck that

value into the variable $n. Next we use the file test operator, "[-f $n]", to see if a

file named $n already exists. The mv command on the other side of the "||" (read this as

"or") will only execute if the file test is not true, i.e. if a file with the new name doesn't

already exist. This not only prevents us from overwriting existing files but also prevents

the spurious errors when the original file name contains no spaces, resulting in $f and $n

being equal.

The idiom "[testsomething] || somecommand" is a convenient short-hand for an "if"

style conditional. Note that there is also a "&&" ("and") operator in addition to "||" ("or").

Choose the appropriate operator depending on the logic in your conditional expression.

cut vs. awk

� cut works well for strongly delimited data:

cut -f1,5 -d: /etc/passwd

� awk works best for arbitrary space-delimited data:

ps –ef | awk '{ print $2 }'

cut vs. awk

It's often useful to pull particular fields out of lines of input, and the most common

command-line tools for doing this in Unix are cut and awk. cut is most useful when the

input you're dealing with is strongly delimited, as in the /etc/passwd file where every

field is separated with colons. In the first example on the slide, we're pulling the first (user

name) and fifth (user full name, or GECOS) field from /etc/passwd. The fields will be

colon-delimited in the output:

cut -f1,5 -d: /etc/passwd
root:root

bin:bin

daemon:daemon

…

Note that cut also allows you to select a range of characters ("-c3-7"), but I don't find

myself using this feature that often.

22

On the other hand, there's an awful lot of files and command outputs in Unix that are

delimited by arbitrary amounts of whitespace. cut doesn't handle this kind of input very

well, but this kind of parsing is exactly what awk was designed to do. awk is obviously a

full-blown scripting language in its own right, but we'll just restrict ourselves to simple awk

idioms that are useful on the command line.

At its simplest, awk merely breaks up each line of input on whitespace and makes the

various fields available in numbered variables $1, $2, and so on. So if you want all of the

process IDs (second column) from some ps output, just pipe the output of ps into "awk

'{ print $2 }'". It's usually necessary to quote the awk code to protect it from

interpolation by the shell.

23

More awk fun

� Look for extra UID 0 accounts:
awk -F: '($3 = = 0) { print $1 }' /etc/passwd

� Accounts with no password set:
logins -p # not available on all Unix systems

awk -F: '($2 = = "") { print $1 }' /etc/shadow

� "… | grep … | awk …" considered stupid:
kill `ps -ef | grep sshd | awk '{ print $2 }'`

kill `ps –ef | awk '/sshd/ { print $2 }'`

However, you can also use conditional operators with awk to select particular lines from

the output and take action only on those lines. In the first example we're printing the user

names (field 1) from all lines in the passwd file where the UID (field 3) is zero. This can

help you discover if attackers have added extra superuser accounts in the middle of a large

passwd file. Notice that awk is perfectly capable of dealing with delimiters other than

whitespace– just specify the delimiter character after -F (similar to the -d option with

cut).

Detecting accounts with null password entries is another good auditing procedure, and on

some Unix operating systems the logins program can help with this. However, logins

is not available on a wide variety of Unix OSes (like Linux and the BSDs), but awk can be

used to accomplish the same thing. Just emit the user names of all accounts that have a

null second field in /etc/shadow.

Note that "ps -ef | grep <processname> | awk '{ print $2 }'" is a

very common idiom. You typically see it used inside of backticks with the kill command

to terminate a particular process by name. However, the grep in this expression is really

a waste of time, since awk has built-in pattern matching. So please leave out the grep–

this is a pet peeve of mine…

24

sort

� You can sort alphabetically or numerically, and by field:
sort /etc/passwd

sort -n -k3 -t: /etc/passwd

� Or how about a descending (reversed) numeric sort:
wc -l * | sort –nr

� Sorting by inode is a useful forensic technique:
ls -li /usr/bin | sort -n

Sorting

Earlier we saw that the ls command has options for sorting its output in various ways, but

Unix also provides a sort command for sorting arbitrary inputs. By default sort will do

an alphabetic sort, but "sort -n" provides numeric sorting instead. sort is actually a

very powerful program with a wide array of different options. For example, the second

example shows how you can specify a delimiter character (similar to cut again) and sort

on a particular field (in fact, sort actually lets you sort on multiple different fields at the

same time if you want to). The "-r" option allows you to "reverse" the default sort order

to do descending sorts.

The last example on the slide is an extremely useful forensic technique. "ls -li"

produces the typical "ls -l" output, but puts the inode number of each file in the first

column of output. Every time a file is replaced it gets a new inode, and since inodes are

generally assigned in numerical order, sorting the directory by inode will allow you to see

the order in which files in that directory have been installed.

The reason this is useful is that if an attacker installs a rootkit, the files installed by that

rootkit will all be sorted together in the command output and all have inodes in the same

small range of values. So even if the attacker has reset the timestamps on the files, you'll

still be able to quickly see the files that got replaced by the attacker.

25

uniq

� uniq eliminates duplicate lines from sorted data:

cut -f3 -d: /etc/passwd | sort | uniq

cut -f3 -d: /etc/passwd | sort –u

� Use "uniq -c" to get a count of repetitions:
ps -ef | awk '{ print $1 }' | \
sort | uniq -c | sort -nr

cut -f3 -d: /etc/passwd | \
sort | uniq -c | grep -v ' 1 '

uniq

The uniq utility removes duplicate lines from its input. The trick is that the input needs to

be sorted first, since uniq will only remove duplicate lines that are right next to one

another in the input. So "… | sort | uniq" is a very common idiom– so common in

fact that most versions of sort have a -u option that does the same thing as "… |

sort | uniq". So do we really need a separate uniq program?

It turns out that uniq has a number of useful options. Perhaps the most useful is the '-c'

flag that displays a count of the duplicate lines from its input. In the middle example on

the slide we're using awk to pull all of the user names from the output of ps and piping

this to "sort | uniq -c" to get a count of the number of processes for each user.

"sort -nr" gives us a nice descending sort:

26

$ ps -ef | awk '{ print $1 }' | sort | uniq -c | sort -nr
34 root

8 apache

7 hal

1 UID

1 rpc

1 ntp

1 mysql

1 dbus

The "1 UID" line is a result of the initial header line from ps. If we wanted to get rid of

that we could do something like "ps -ef | tail +2 | awk …", but the above is

good enough for most purposes.

In the last example on the slide, we're pulling the UID values out of the /etc/passwd

file and sending them to "sort | uniq –c". The last grep command discards any

UIDs where the count from "uniq –c" is 1. The resulting output, therefore, is any

duplicate UIDs (UIDs that appear more than once) in the passwd file (similar to "logins

-d" on Unix operating systems that support the logins command). Since you shouldn't

ever have duplicate UIDs in your password file, the output of this shell pipeline should

normally be null. But obviously it's very interesting to you if the output isn't null.

27

Brain Teasers

grep -l spammer@example.com qf* | \
cut -c3- | xargs -I'{}' rm qf{} df{}

for f in *; do
echo -n "$f "
grep TEST $f | wc -l

done | \
awk '{t = t + $2; print $2 "\t" $1}

END {print t "\tTOTAL"}'

export PS1='C:${PWD//\//\\\\}> '

What Do These Do?

See if you can figure them out on your own. You can find the answers and full explanations

on our Command Line Kung Fu blog:

http://blog.commandlinekungfu.com/2009/03/episode-12-deleting-related-files.html

http://blog.commandlinekungfu.com/2009/06/episode-46-counting-matching-lines-in.html

http://blog.commandlinekungfu.com/2009/04/episode-28-environment-list.html

Finishing Up

� Any final questions?

� Any problems you think will stump Hal?

� Thanks for participating!

� Please fill out your surveys

http://www.deer-run.com/~hal/ (Slides)

http://blog.commandlinekungfu.com/ (More Fu)

Thank you for your time and attention. If you have any questions about the material in this

presentation, here's my contact info again:

Hal Pomeranz hal@deer-run.com

Deer Run Associates (541)683-8680

PO Box 50638 (541)683-8681 (fax)

Eugene, OR 97405 http://www.deer-run.com/

29

