
1

Solaris Jumpstart Basics

Hal Pomeranz
Deer Run Associates

All material Copyright © Hal Pomeranz and Deer Run Associates, 2000-2001. All
rights reserved.

Hal Pomeranz * Founder/CEO * hal@deer-run.com
Deer Run Associates * PO Box 20370 * Oakland, CA 94620-0370
+1 510-339-7740 * http://www.deer-run.com/

2

Wouldn't It Be Great If..?

Adding a new machine were as simple
as setting up the hardware?

Machines automatically customized
themselves to their environment?

Broken systems could be swapped out
quickly and with low admin overhead?

You could upgrade your network (or do
patch installs) simply by rebooting?

If you run a network of more than a dozen or so Sun workstations, you're probably
spending an inordinate amount of time installing systems, upgrading systems,
applying patches, etc. It may seem like you don't even get done with one round of
upgrades before you need to start thinking about the next one. You might be in a
situation where all of your systems have slightly different configurations depending
on when they were installed and who set them up. None of these situations is
desirable.
Wouldn't it be great if you could create a single system image for all of your
machines and upgrade that image across your entire network just by rebooting?
Well, you can…

3

What is Jumpstart?

Mechanism for "one-button installs"
from central server

Simultaneously supports multiple
system configurations and OS versions

Extensible to allow automatic local
customizations

The Jumpstart mechanism was developed by Sun in order to simplify installations
on large networks of mostly similar hardware. The basic idea is that system
configuration information is stored on a central server. When new clients are added
to the network, the client boots from the central configuration server and then runs
an automated install program which partitions the client's disk(s), installs the
operating system, and makes appropriate local configuration changes (setting
network parameters, hostname, etc.). Creating the configuration server requires a
fair amount of System Administration expertise, but adding clients can then be
accomplished by completely untrained technicians– this is called "leveraging key
employees".
The Jumpstart process also allows the local administrator to create custom scripts
that are run either before ("pre-install") or after ("post-install") the Jumpstart
process (or both). This allows sites to create even more finely customized install
routines for their particular site. More on pre- and post-install scripts in the last
section of this talk.
Note that Jumpstart works for both Sparc and Intel-based systems. However, Intel-
based machines don't have the appropriate boot ROM code to do a network boot, so
the administrator must create a "boot floppy" to be used during the initial install. A
single Jumpstart server may support booting clients from multiple different
hardware platforms and/or operating system revisions. For example, the author has
a single Jumpstart server at home which is capable of booting machines on any OS
release from 2.5.1 through Solaris 8.

4

References for Further Reading

Solaris Advanced Installation Guide
(Chapters 6 through 11)

Hal's jumpstart info page:
www.deer-run.com/~hal/jumpstart/

Sun's primary reference for Jumpstart configuration is the Solaris Advanced Installation
Guide which may be found on the Web at

http://docs.sun.com/ab2/coll.214.7/

SPARCINSTALL/@Ab2PageView/6302

Note that the above URL has been broken in the middle for readability– feed it to your
Web browser as a single long line.
The Advanced Installation Guide spends about 125 pages talking about Jumpstart, while
this presentation covers much of the same material in about 30 slides. Needless to say,
some detail is lost. It's a good idea to print out the relevant chapters from the Advanced
Installation Guide and keep them around as a reference.
Electronic versions of this presentation, plus helpful scripts and other Jumpstart-related
tools and information can be found at

http://www.deer-run.com/~hal/jumpstart/

Hopefully this information will be updated on a regular basis, so you may want to check
back periodically.

5

Setting up a Jumpstart Server

This section covers the "quick and dirty" procedure for getting your first Jumpstart
server on the network. Preparing for individual client installs will be covered in the
next section.

6

Jumpstart Components

When we talk about a "Jumpstart Server", we are really talking about three different
processes. When a client is booting under Jumpstart, it first needs to contact a Boot
Server so that the client can set its basic network parameters (via RARP and
bootp) and download the network boot code (via TFTP). The client actually boots
off a Solaris image stored on the Install Server– the boot image is mounted on the
client via NFS. Once the client is booted, it has to look up configuration
information from the Configuration Server. The client then proceeds to run the
Jumpstart install program and load the OS from another directory on the Install
Server.
For the rest of this talk, we'll be assuming that we have a single machine which is to
be the Boot Server, the Install Server, and the Configuration Server. However, on
large networks it may be advisable to split these functions across multiple
machines. For example, the bootp protocol is LAN-based and you generally need
a Boot Server on each of your networks (though you can finesse this by using
proper router configuration). If you are planning on Jumpstarting a large number of
machines simultaneously, you may want to deploy multiple install servers because
they can quickly become saturated if multiple clients are being built in parallel.

7

Overview of Steps

1. Create install and configuration dirs

2. Copy OS media to install directory

3. Copy scripts to configuration directory

4. Create sysidcfg file in install dir

5. Create /tftpboot

6. Start system daemons

In order to build your Jumpstart server, you will need a copy of the OS media for
each of the OS platforms you wish to support. The install server will require about
500MB of space (750MB for Solaris 8) per OS image.
Note that the Boot Server must run in.rarpd, rpc.bootparamd, and
in.tftpd (via inetd). The Install and Configuration servers will be needing to
share file systems via NFS with the client machines.

8

Step 1: Create Install/Config Dirs

mkdir –m 755 /export/jumpstart /export/jump_5.8

chown root:root /export/jumpstart /export/jump_5.8

cat >>/etc/dfs/dfstab

share –F nfs –o ro,anon=0 /export/jumpstart

share –F nfs –o ro,anon=0 /export/jump_5.8

^D

shareall

First the administrator must create the install directories (one per supported OS
version) and the configuration directory (only one of these no matter how many OS
versions you plan to support). If you're planning to split the Configuration Server
and the Install Server onto separate machines, then the install directories belong on
the Install Server and the configuration directory lives on the Configuration Server.
The directories may be located anywhere in the file system and may be given any
name. However, the author recommends that install directories be named
something like jump_<osvers> in order to make automatic scripting easier.
This will save you lots of time when creating customized pre- and post-install
scripts. For the rest of this talk, we will assume the naming conventions used
above.
Once the directories are created, they must be shared via NFS to the rest of the
network. Note that the file systems are being shared read-only (that's the "ro"
option above) but that all machines on the network are being given anonymous root
access to the file systems (any machine which can access the Jumpstart server can
mount these file systems and remotely read any file with root privilege). The
administrator may choose to restrict root privilege to only the clients being installed
(see the root= option on the share_nfs manual page), but managing access on
a per-machine basis can be difficult across a large network.

9

Step 2: Copy OS Media

Install OS:
mount –r –F hsfs /dev/dsk/c0t2d0s0 /mnt

cd /mnt/Solaris_8/Tools

./setup_install_server /export/jump_5.8

Solaris 8 has a second OS disk:
cd /

eject cdrom

mount –r –F hsfs /dev/dsk/c0t2d0s0 /mnt

cd /mnt/Solaris_8/Tools

./add_to_install_server /export/jump_5.8

Once the install directory has been created, the OS must be read off CD-ROM and
placed in the directory. If the volume manager is running on your Jumpstart server,
then the OS media will be mounted automatically. Otherwise, the OS CD-ROM
must be mounted manually using commands similar to those shown above
(although the actual disk device corresponding to your CD-ROM drive may vary
from system to system).
Once the CD-ROM is mounted, navigate over to the Tools directory and run the
setup_install_server script, specifying the install directory name you
created and shared in the previous step. Note that this script takes an inordinate
amount of time to run, so go get coffee while the install directory is being created.
This process must be repeated for every OS version you want to support on your
Jumpstart server.
Solaris 8 (and probably future versions of Solaris) now comes on two CD-ROMs.
After the first CD-ROM has been installed, mount the second CD-ROM and run the
add_to_install_server script to complete the Solaris 8 install directory.

10

Digression: Know Your Install Dir
Interesting stuff is in
/export/jump_5.8/Solaris_8

Misc/jumpstart_sample contains
sample configs and scripts

Tools contains scripts for adding clients

Tools/Boot is boot image for clients

Product directory contains Solaris
packages which will be installed

Before we continue setting up our Jumpstart server, it's worthwhile to review the
contents of the install directory that was created in the last step. Underneath your
install directory will be a directory named Solaris_<vers> (e.g., Solaris_2.6
or Solaris_8). This directory is where all of the interesting components live.
The Misc/jumpstart_sample directory contains a sample configuration
directory which you can use to base your own client configurations on. The Sun
documentation recommends just copying the entire contents of the
jumpstart_sample directory to your configuration directory, but we are going to
be more selective. The Tools subdirectory contains the add_install_client
script which is necessary when adding client configuration information to a Boot
Server (more on this later).
Tools/Boot is a complete copy of the Solaris OS, and is the directory which the
clients use for NFS booting when they are first being booted off the network. Note
that this directory is the unpatched Solaris image off the CD-ROM, so you may want
to patch this version of the OS for security (use patchadd –C <dir> to patch the
install directory image). The Product directory contains all of the Solaris OS
packages from the CD-ROM (thus, the install directory really contains two distinct
copies of the Solaris OS)– these are the packages which will be installed onto the
client machine by the Jumpstart process. You could add your own local packages to
the Product directory if desired (more on how to specify installed packages in the
next section).

11

Digression (cont.)

Patches subdirectory contains
patches to install during jumpstart

An MU directory may also exist which
contains maintenance update patches

Patches are installed in order based on
when they were added to directory

This is almost never what you want…

The install directory also contains a Patches subdirectory– patches stored here
will be automatically installed by the Jumpstart process. However, the Jumpstart
process doesn't use the same patch_order file functionality that the Sun
Recommended Patch Clusters use to ensure patches get installed in the proper
dependency order. Instead, the Jumpstart process just installs patches based on the
timestamp on the patch subdirectory in the Patches directory (i.e, when the patch
was added to the Patches directory). This is just terrible behavior because it
means that patches are often installed in the incorrect order, which can actually
cause the patching process to abort.
Note that the install directory may (or may not) contain an MU directory. MU stands
for "Maintenance Update", and various releases of an operating system may include
Maintenance Updates which either add support for new hardware, add functionality,
and/or fix bugs in the original release (generally called the "First Customer Ship" or
"FCS release"). The MU directory contains lots of files and some READMEs about
the contents of the update, but ultimately the update is really just another collection
of Sun patches which will be installed by the Jumpstart process out of one of the
subdirectories of the MU directory.

12

Patches vs. Jumpstart

Lack of patch_order file really hurts
jumpstart package install functionality
Installing lots of patches slows down
jumpstart significantly
Recommendation:
� Remove contents of Patches directory

(and totally remove MU directory, if any)
� Install Sun recommended patch cluster as

part of local post-install process

If you've ever installed the Sun Recommended Patch Cluster on a machine, you
know that it can take longer to install patches than to install the basic OS. It's also
probably the case that you will be installing the Sun Recommended Patch Cluster as
part of your local custom post-install process, because the Recommended Patch
Cluster is a superset of the patches that come off the OS CD-ROM. Aside from
performance issues, the fact that the Jumpstart process doesn't obey any sort of
patch_order file, makes using Jumpstart to install patches not the way to go.
So, once the install directory has been created, simply go ahead and remove all
patches from the Patches directory in the install area.
It's your call whether or not to keep the Maintenance Update directory. On the one
hand, the update may add useful functionality or fix critical bugs for your platform
(on the other hand, the update may have no impact at all on your platform).
However, installing the update will make the Jumpstart take longer on each client,
even if the update doesn't apply to that client platform. Look at the documentation
which comes with the update and decide for yourself whether or not you want to
install it.

13

Exception to the Recommendation

There's a bug in the Solaris 7 autoconf
routines from CD-ROM

As a fix, patch 106978 must be
installed by the Jumpstart

Make sure a recent version of this
patch exists in your Patches directory

If you are creating a Solaris 7 install directory, however, it is critical that the
Patches directory contains a recent copy of Sun Patch ID 106978. This patch fixes
bugs in the auto-configuration routines which are required for the client machines to
boot fully unattended.

14

Step 3: Copy Scripts to Config Dir

We definitely need the check script:
cd /export/jump_5.8/Solaris_8

cd Misc/jumpstart_sample

mkdir –p –m 755 /export/jumpstart/bin

cp check /export/jumpstart/bin

chmod 755 /export/jumpstart/bin/check

chown –R root:root /export/jumpstart/bin

You may want to look at sample
configuration files in this directory…

With the install directory created and properly configured, we now want to set up our
configuration directory. We need a copy of the check script from the
Misc/jumpstart_sample directory. Note that if your Jumpstart server supports
multiple OS revisions, make sure to use the check script from the latest supported
OS release. Thus, if your system boots both Solaris 7 and Solaris 8 clients, grab the
Solaris_8/Misc/jumpstart_sample/check script.
The jumpstart_sample directory also contains some sample client configuration
files. It may be useful to review these sample files after hearing the information in the
next section of this talk.

15

Step 4: The sysidcfg File

system_locale=en_US

timezone=US/Pacific

timeserver=localhost

terminal=xterms

network_interface=PRIMARY \

{netmask=255.255.255.0 protocol_ipv6=no}

name_service=DNS \

{domain_name=deer-run.com name_server=192.168.1.2}

security_policy=NONE

root_password=papAq5PwY/QQM

The information in the sysidcfg file is used by clients to set various system
parameters during the Jumpstart process and when the client reboots for the first time.
The format of this file is (slightly) OS version-dependent but shouldn't vary from
client to client, so it's probably easiest to locate the file at the top of the install
directory (/export/jump_5.8/sysidcfg in our example).
It is important to note that the sysidcfg file contains a copy of the client's encrypted
root password entry for /etc/shadow, so the file should certainly be mode 400 and
owned by root. Recall, however, that the install directory was exported with
anonymous root access, so anybody on another machine could mount the install
directory and read the file. Make sure that the client systems have a different root
password from all of your other machines! Note also that a copy of the sysidcfg
file is retained in the client's /etc directory– you probably want to delete this file
after the first reboot.
Other parameters in the file include the system's default locale and time zone (consult
the Advanced Installation Guide for more info). The netmask of the primary network
interface can be specified as well as name service parameters (NIS is supported as
well– see the Advanced Installation Guide). Note that the protocol_ipv6 and
security_policy options are supported only under Solaris 8– delete these
options and the above file is appropriate for Solaris 7 (see next slide for note on
Solaris 2.6). The security_policy option is not documented in the manual pages
or the Advanced Installation Guide– see instead
http://www.sun.com/software/solutions/blueprints/0300/sysidcfg.pdf

16

Solaris 5.6 sysidcfg File

timezone=US/Pacific

timeserver=localhost

terminal=xterms

network_interface=hme0 {netmask=255.255.255.0}

name_service=NONE

root_password=papAq5PwY/QQM

The Solaris 2.6 sysidcfg file is considerably more primitive than the Solaris 7
and 8 versions (sysidcfg is not supported prior to Solaris 2.6, meaning
Jumpstarts for Solaris 2.5.1 and earlier require some administrator intervention
during the boot process).
In particular, note that DNS is not supported for the name_service parameter–
you will have to manually configure DNS after the system boots or during the post-
install phase. Also note that the primary interface for the system must be explicitly
specified. This means you can't use the same sysidcfg file for systems that have
le0 interfaces (older microSparc-based machines).

17

Step 5: Create /tftpboot

Create the directory
mkdir –m 711 /tftpboot

chown root:root /tftpboot

You'll also need to uncomment the
right line in /etc/inet/inetd.conf

The Boot Server must have a /tftpboot directory. Aside from being the
location for the network boot code for the client machines, the presence of the
/tftpboot directory is what triggers the Boot Server to start the in.rarpd and
rpc.bootparamd processes at boot time.
However, in order for the system to service TFTP requests, the administrator must
also uncomment the appropriate line in /etc/inet/inetd.conf and send a
HUP signal to the running inetd process (or reboot the system). The line you're
looking for in inetd.conf is
#tftp … /usr/sbin/in.tftpd in.tftpd -s /tftpboot

18

Step 6: Start System Daemons

A bunch of daemons to (re)start:
� NFS daemons
� in.rarpd

� rpc.bootparamd

� inetd

Rebooting the jumpstart server is
probably easiest…

Once all directories are created and configured, the administrator needs to make
sure that all of the appropriate daemons are running. The Installation and
Configuration Servers require that the NFS server processes (mountd, nfsd,
statd, and lockd) all be running. The Boot Server must be running in.rarpd
and rpc.bootparamd and have TFTP properly configured in inetd.conf and
have the inetd process running.
Frankly, assuming that our Jumpstart server has no other particular duties, the
easiest thing is to just reboot the system. Assuming all of the directories and
configuration files are in good order, all of the necessary daemons should be started
automatically by the boot process.

19

Adding Clients

With the server properly configured, it's time to turn our attention to creating
individual client configurations and updating our Jumpstart server to allow
particular clients to boot.

20

Steps for Adding a Client

1. Create client profile
2. Create pre- and post-install scripts
3. Update /export/jumpstart/rules
4. Run check script
5. Add ethers and hosts information
6. Run add_install_client script
7. Reboot client machine

The administrator must complete the seven steps listed above before a client can be
successfully Jumpstarted. However, the first four steps generally do not need to be
performed for every client– the administrator can usually create a small number of
client profiles and pre- and post-install scripts which will suffice for a large number
of machines. More on this in the next few slides.

21

Step 1: The Client Profile
install_type initial_install

system_type standalone

cluster SUNWCprog

package SUNWaccr add

package SUNWaccu add

partitioning explicit

filesys c0t3d0s0 512 /

filesys c0t3d0s1 2048 /var

filesys c0t3d0s2 all overlap

filesys c0t3d0s3 2048 swap

filesys c0t3d0s4 1024 /usr

filesys c0t3d0s5 free /local

The client profile file is used to describe how individual machines should be configured.
Generally speaking, the client profile describes how the system's disk(s) should be
partitioned and which OS software packages should be loaded on the machine– machines
with similar disk partitioning and OS configurations can use the same profile file (even if
those machines are running different OS revisions).
Each profile file must begin with the install_type directive– initial_install
means blow away everything on the disks and start from scratch, but upgrade is another
possibility (see the Advanced Installation Guide for more info). Various system_type
choices exist– standalone means a machine with a full OS install on the system's local
disks (probably the most common configuration in these days of large disk drives).
Next the administrator specifies which OS cluster should be installed. Cluster choices are
SUNWCreq (aka the Core System Support cluster), SUNWCuser (End-User cluster),
SUNWCprog (Developer cluster), and SUNWCall (Every OS package). Packages may
then be added or deleted from the cluster by using package directives.
Administrators may specify the exact disk partitioning using partitioning
explicit (as opposed to having the Jumpstart do an automatic partitioning which is
usually sub-optimal). Partition sizes are in megabytes. Note that the size of the last
partition is listed as free which means that this partition consumes any remaining
unallocated space. When configured carefully, the same partition table can work even on
disks of unequal sizes!

22

Step 2: Pre- and Post-Install Scripts

Always strictly optional

Careful! New system's disks are
mounted on /a during jumpstart

Script output automatically saved to
/a/var/sadm/system/logs

More on all of this in a later section…

The administrator may optionally create pre- and post-install scripts. The pre-
install script runs before the system profile file is read and executed (i.e., before the
system's disk drives are repartitioned and the new OS image loaded). This means
that pre-install scripts are an excellent place to back up various files from the
original system (e.g., configuration files under /etc, log files, SSH host keys, et
al). Note that the pre-install script will have to explicitly mount (and unmount) the
file systems from the system's local drives, because the local file systems won't be
mounted at the time the pre-install script runs.
By the time the post-install script runs, the new file local file systems will be
created and the OS will have been loaded. Note, however, that the new file system
created on the system's local drives will be mounted with the local root file system
at /a, so make sure the post-install script follows the proper indirection. Post-
install script are a good place to do local system customization and restore files that
were backed up by the pre-install script.
The output of the pre- and post-install scripts can be found in the
/var/sadm/system/{begin,finish}.log files on the new system once
the Jumpstart is completed and the new system has rebooted.

23

Step 3: The rules File
Format of entries are:
<match rule> <pre-inst> <profile> <post-inst>

Sample File:
hostname srvr1.deer-run.com \

- srvr1.prof bin/make-serv.sh

network 192.168.10.0 - eng.prof bin/enghost.sh

network 192.168.128.0 && karch sun4m \

- old-sup.prof bin/sup-tools.sh

network 192.168.128.0 \

- sup.prof bin/sup-tools.sh

any - generic.prof bin/do-patch.sh

The purpose of the rules file is to associate profile file and pre- and post-install scripts
with a particular machine or group of machines. Entries are searched in order until the
match criteria in the first column fits the client being booted; that rule is then executed
("first match and exit" behavior).
Each rule is a single line, but lines may be continued using "\" as shown above. Pre- and
post-install scripts may be omitted by putting a "-" in the appropriate column (actually,
as we'll see in the next section, even the profile can be omitted in some cases).
Comments are allowed if prefixed with "#". Script names and profile file names are
relative to the top of the Jumpstart configuration directory.
Match criteria cover a wide variety of different system parameters, and not just the
simple criteria shown above. For a complete list, see the Advanced Installation Guide.
Note that logical operations (and, or, not) are supported.
The first line above shows an example of a rule for a particular machine. Generally,
however, rules apply to a group of machines (a network or particular hardware type
which should all be configured identically) as we see in later rules. The third and fourth
lines above take advantage of the "first match and exit" behavior to configure older
microSparc machines using one profile and newer (probably UltraSparc) machines using
another. However, both classes of machines use the same post-install script. The last
line is a catch-all or default entry for machines which don't match any of the previous
rules. It may be dangerous to allow any random machine which connects to your
network to Jumpstart from your server– you may not wish to include a default rule in
your file.

24

Step 4: Run check Script

Script should be run each time the
rules file is updated

Script checks the syntax of profiles and
verifies that scripts exist

As a side-effect, creates the rules.ok
file for jumpstart process

The check script that we copied from the jumpstart_sample directory is
used to validate and pre-process the rules file. The check script verifies the
syntax of the profile files that are listed in all rules, and checks that the listed pre-
and post-install scripts exist (but doesn't check script syntax). More importantly
perhaps, the check script creates the rules.ok file which is the file that is
actually consulted during the Jumpstart (the rules file itself is only used by the
administrator and the check script).
Again, if your Jumpstart server is providing configurations for several different OS
revisions, make sure to use the check script from the most recent Solaris version
(some profile entries in newer versions of Solaris are not backwards compatible
with older check scripts).

25

Step 5: Update Host Info

/etc/ethers should contain the MAC
address and FQDN of the host

Also make sure the jumpstart server
can resolve the name of the host

If you're using hosts files or NIS/NIS+,
list the FQDN first

Each time a new host is added to the Jumpstart network, the Boot Server needs to
be updated. The ethernet (MAC) address and hostname of the machine need to be
added to the Boot Server's /etc/ethers file. The machine's ethernet address is
displayed in the Sun banner when the system boots, and is also available on running
systems by running ifconfig (as root) and/or from the packing slip which comes
with each new machine.
The Boot Server also needs to be able to resolve the machine's IP address, either
from its own hosts file or from NIS/NIS+ or DNS, depending on how the Boot
Server is configured. This will mean updates on either the Boot Server machine
itself or on your name server.
Generally, it's good policy to use the fully qualified domain name (FQDN) form for
all entries in the /etc/ethers, /etc/inet/hosts, and even in the rules
file in the Jumpstart configuration directory (for /etc/inet/hosts list the
FQDN first followed by the unqualified form). Being consistent throughout will
save a lot of headaches down the road.

26

Step 6: add_install_client

cd /export/jump_5.8/Solaris_8/Tools

./add_install_client \

-c jumpsrvr:/export/jumpstart \

-p jumpsrvr:/export/jump_5.8 \

-s jumpsrvr:/export/jump_5.8 \

sun01.deer-run.com sun4u

Once all of the client information has been updated on the Boot Server, the
administrator needs to run the add_install_client script. This script is
found in the Tools directory in the appropriate install directory for the version of
Solaris that you want the client to run. Make sure you use the correct
add_install_client script! The add_install_client script is
responsible for placing the appropriate boot code and symbolic links in
/tftpboot to allow the client machine to boot. add_install_client also
updates the /etc/bootparams file used by rpc.bootparamd.
The –c flag specifies the server name and path for the Jumpstart configuration
directory (the server name here would be your Configuration Server). The –s flag
specifies the Install Server and pathname to the install directory. –p is the location
of the sysidcfg file (don't use this option for Solaris releases prior to 2.6), which
we've stored at the top of our install directory. You also need to specify the name of
the machine (again use the FQDN here) and the kernel architecture of the client
(this is the output uname –m on the client host).

27

A Better Way

Too much typing!

Lots of redundant information

OS version dependent

How about this instead:
cd /export/jumpstart/bin

./add_client sun01.deer-run.com sun4u 5.8

Frankly, the add_install_client requires way too much (redundant) typing,
and forces the administrator to get to the correct install directory to run the right
version of the script. You'll find a simpler add_client script at the
http://www.deer-run.com/~hal/jumpstart/ site. Once you've
downloaded the script, edit the file and make sure the CONF_SERVER,
CONF_DIR, INST_SERVER, and INST_ROOT variables are set appropriately for
your server. Note that the add_client script assumes that the install directories
are $INST_ROOT/jump_<osvers> (i.e., the conventions we've been using in
this talk).

28

Step 7: Reboot Client

ok boot net - install

Once the Boot Server setup is completed, boot the client system as shown above.
Note that the boot line is "boot <space> net <space> - <space> install".
The most common error is to type "-install" as a single final argument, but then
the Jumpstart won't proceed.

29

Tricks of the Trade

With the basic Jumpstart configuration procedure out of the way, it's time to look at
some tips and tricks for writing pre- and post-install scripts. We'll also discuss why
and how to bypass the "normal" Jumpstart installation procedure in order to make
system installs more efficient.

30

Testing Pre-/Post-Install Scripts

Things don't always work as expected
in the jumpstart environment

boot net (with no additional args)
brings up interactive install

Exit the suninstall program and
you can do your script testing

One of the problems with writing pre- and post-install scripts is that it can be
difficult to simulate the Jumpstart environment for testing purposes. The good
news is that you don't have to.
The trick is to configure the Jumpstart server as if you were preparing to boot a new
Jumpstart client (set up /etc/ethers and /etc/inet/hosts, run the
add_client script, etc.). However, when you boot the client just use "boot
net" without the "- install" flags. This will cause the client to boot over the
network and start the interactive suninstall program. You may, however, quit
out of this program on the first screen (hit <F5> and then <F2>) and end up at a
shell prompt in the Jumpstart environment. You can then mount your pre- and post-
install scripts via NFS from the Configuration Server and test to your heart's
contentment.

31

Discretion, Valor, et al…
ROOT=/a

BOOTSCRIPT=/etc/rc2.d/S74Patch

SERVER=192.168.1.1

FILESYS=/export/patches

MOUNTPT=/mnt

cp /dev/null ${ROOT}/${BOOTSCRIPT}

chmod 744 ${ROOT}/${BOOTSCRIPT}

echo '#!/sbin/sh' >> ${ROOT}/${BOOTSCRIPT}

echo "mount ${SERVER}:${FILESYS} ${MOUNTPT}" \

>> ${ROOT}/${BOOTSCRIPT}

echo "cd ${MOUNTPT}/\`uname -r\`" >> ${ROOT}/${BOOTSCRIPT}

echo "./install_cluster -q -nosave">> ${ROOT}/${BOOTSCRIPT}

echo "rm -f ${BOOTSCRIPT}" >> ${ROOT}/${BOOTSCRIPT}

echo "reboot -- -r" >> ${ROOT}/${BOOTSCRIPT}

Sometimes the most appropriate time to run a post-install script is not during the
Jumpstart process at all, but rather immediately after the client system boots for the
first time.
This slide shows a post-install script whose only job is to create a boot script on the
client system which will be triggered when the client boots for the first time. This
generated script actually installs the Sun Recommended Patch Cluster which it
obtains over the network via NFS from a central server. Installing the patch cluster
in the Jumpstart environment is more difficult because all of the client's local file
systems are mounted on /a.
It may be difficult to read the code above, but the generated script ends up in
/etc/rc2.d/S74Patch and reads as follows:

#!sbin/sh
mount 192.168.1.1:/export/patches /mnt
cd /mnt/`uname –r`
./install_cluster –q –nosave
rm –f /etc/rc2.d/S74Patch
reboot -- -r

Note that we're using the IP address of the patch server since we can't be guaranteed
that name service is working properly at this point. Also note that the script
removes itself before it calls reboot. Nothing wrong with this behavior– the script
won't actually be removed completely until all processes which have the file open
are terminated.

32

The Bad News

Jumpstart installs software in a very
inefficient manner

Patches can also take a long time to
install, depending on time since FCS

Full install + recommended patch
cluster can take 1.5 hours

The truly unfortunate aspect of the Jumpstart install process is that each OS package
is added onto the system one at a time via the pkgadd process. There's a lot of
overhead to pkgadd, not to mention the fact that the file system containing the
packages has to be read via NFS from the central Install Server host. Then you're
probably going to want to install at least the Recommended Patch Cluster. Total
install time can be as much as 90 minutes, which may not seem like a long time
unless (a) you've got 500 machines to build in one evening, or (b) you're trying to
replace a user's desktop so that they can get back to work.
However, Virginia, there is a Santa Claus…

33

The Good News

You don't have to use the standard
jumpstart install process

Custom pre- and post-install scripts can
be used instead

Sample rules file entry:
network 192.168.128.0 \

bin/clone - bin/clone-postinst

The good news is that if you're clever at writing your pre- and post-install scripts
then you can completely bypass the normal Jumpstart install process. If the
administrator does not specify a profile file in the rules entry for a given
machine, then Jumpstart expects that the pre- and post-install scripts are completely
responsible for installing the OS on the local client machine.
Frankly, the really difficult part about installing systems using custom pre- and
post-install scripts is partitioning the local disk properly, though there are some
other cute hacks that need to be reviewed as well. The rest of this section will focus
on a specific example of a custom pre-install script which rapidly copies a default
OS image onto a new client.

34

The clone Script

Build one machine (by hand or with
standard jumpstart)

Make a level 0 backup of all file systems
(and copy of partition table)

clone script operates on "blank" host:
� Copies partition table and builds file systems
� Restores dumps from "standard" host
� Tweaks hosts files to change identity

The clone script operates by restoring another system's image onto a new
machine's local disk drives via ufsrestore. The administrator needs to
somehow create a "gold standard" version of a particular platform (either via a
standard Jumpstart or manually). Once satisfied with the system configuration, the
admin makes level 0 backups of that machine's file systems and copies the dump
files (compressing or gziping the files is a good idea) to a central server.
The clone script will simply mount the dump files from the central server and
ufsrestore them onto the client's disks. Of course, the clone script has to first
partition the client's local disk appropriately and create file systems in the new
partitions (more on this coming up), so part of the prep work before running the
clone script is copying the partition table from the "gold" machine to the central
server where the dump files reside. Once the clone script restores the dump
images onto the new machine, it needs to tweak half a dozen files so that the new
system comes up with a different hostname and IP address from the "gold"
machine.
The clone script runs in less than half the time of the standard "package-by-
package" Jumpstart install process (install speed is essentially limited only by your
network bandwidth and disk speed on the target host). You can find copies of the
clone script and related files at the usual http://www.deer-
run.com/~hal/jumpstart/ site.

35

Some Defaults to Get Started

What's my host name?
HOSTNAME=`uname –n`

What OS version is this?
OSVERS=`uname –r`

What kind of machine am I?
PLATFORM=`prtconf | awk '/^SUNW,/ { print }'`

The clone script needs to set a bunch of defaults before getting underway. Much
information about the client machine can be derived from the uname command
once the client has booted up in the Jumpstart environment.
In particular, uname –i usually returns the system's hardware type– this is a string
like SUNW,Ultra-5_10. However, on some non-Sun hardware uname –i is
not always completely reliable. A more cumbersome (but also more portable)
method is to pull this information out of prtconf as shown above. To get an idea
of what's going on, it's helpful to look at the output of prtconf

% prtconf
System Configuration: Sun Microsystems sun4u
Memory size: 384 Megabytes
System Peripherals (Software Nodes):

SUNW,Ultra-5_10
[…additional lines deleted …]

The awk line simply matches the line which starts with "SUNW," and prints it.

36

More Defaults

What's my disk device?
PRIM_DISK=`ls /dev/rdsk | \

head -1 | sed 's/..$//'`

What kind of disk is it?
DISK_NAME=`format -d $PRIM_DISK \

-f $CROOT/lib/format.cmd | \

awk '/^</ { print $1 }' | sed 's/<//'`

On single-disk systems, determining the system's primary disk device is straightforward.
Our script gets a listing of /dev/rdsk and simply snatches off the first entry– usually
something like c0t3d0s0. If you want the disk device and not a disk slice, then you need
to drop the last two characters (c0t3d0). On multi-disk systems, the disk which is sorted
first by ls (usually the disk with the lowest SCSI target ID) is not guaranteed to be the
system's boot disk, so proceed with caution!
Finding out the manufacturer's name for this disk turns out to be tricky. The only place this
information is available is from the format command:

format -d c0t0d0
[… lines deleted …]
format> current
Current Disk = c0t0d0
<ST39120A cyl 17660 alt 2 hd 16 sec 63>
/pci@1f,0/pci@1,1/ide@3/dad@0,0

format> quit
#

The string we're trying to get at is "ST39120A", but format likes to be run interactively
rather than in a script. The work-around is to create a "command file" and feed it to
format with the –f option. The command file contains the current and quit
commands we would normally enter in an interactive session. We feed the output to awk to
pull out the string we need.

37

What They Didn't Teach You…

echo "Writing partition table (VTOC) to disk:"

if [-f $CROOT/disks/$PART_FILE]; then

fmthard -s $CROOT/disks/$PART_FILE \

/dev/rdsk/${PRIM_DISK}s2

else

echo "No $CROOT/disks/$PART_FILE"

exit 255

fi

echo ""

If you've been administering Solaris machines for a long time, you may think that the
way you write partition tables to drives is with the format command. However, as we
discussed on the last slide, format is a pain to run from inside a non-interactive script.
It turns out that Solaris also supplies the fmthard command for non-interactively
writing partition tables (formally speaking, that's the disk's VTOC or volume table of
contents) based on a data file. The data file format used by fmthard is tricky, but
Solaris also supplies the prtvtoc command which can dump out the VTOC from an
existing disk drive in the format used by fmthard.
So, as far as the clone script goes, the administrator needs to partition the "gold"
system or some other machine with the same type of disk drive as the target platform
and then run prtvtoc to dump that partition table into a file. The partition file should
then be stored on the same server that the dump images are kept on. The name for the
partition file for the clone script is (by default) the manufacturer's disk name which
we extracted via format on the previous slide.
Note that disk geometry (cylinders, tracks, heads, etc.) varies widely from manufacturer
to manufacturer and from disk to disk. You almost certainly can't use the same VTOC
on a 9GB disk from two different manufacturers, so make sure you run the prtvtoc
command on a system which has a matching disk as compared to your target machine.
Note that Sun regularly changes disk drive vendors, so three Ultra5s bought at three
different times may have three completely different disks.

38

Building the Root File System

echo "Building root file system:"

newfs /dev/dsk/${PRIM_DISK}s0 </dev/null

mount /dev/dsk/${PRIM_DISK}s0 /a

cd /a

zcat $CROOT/images/$SYS_IMAGE/root.dump.Z | \

ufsrestore -rf -

rm -f restoresymtable

echo ""

Once the VTOC has been written, the clone script needs to start building file
systems with newfs and then doing the restores (you can't do a restore into a raw
disk partition, so you need to newfs first). newfs will run interactively unless its
input is not a tty, so we redirect its input to come from /dev/null. Technically
we should run fsck on the file system between the newfs and the mount, but
frankly it's never been a problem for your author.
The clone script restores the root file system first so that it can get at the
/etc/vfstab file and find out about the other file systems that need to be
configured for the "standard" system image. Note that we are maintaining the
Jumpstart convention of building the file systems on the local disk by rooting them
on /a in the Jumpstart environment. The restoresymtable file is an artifact
of the ufsrestore process and can be safely deleted.

39

Reading the vfstab File

set -- `awk

'(!/^#/ && $4 == "ufs" && $3 != "/") \

{ printf("%s %s\n", $1, $3) }' \

/a/etc/vfstab`

while [$# -ge 2]; do

DEV=$1

FS=$2

shift 2

… rest of code on next slide …

done

Next we need to find all of the other UFS file systems which need to be created on
the local client. The awk script looks at the /a/etc/vfstab file we just
restored and pulls out all non-comment lines (!/^#/) which refer to UFS file
systems (the fourth column of the vfstab file is equal to "ufs") which are not the
root file system (the third column not equal to "/") that was already restored. The
awk script prints out the first (disk device) and third (mount point) columns of any
matching lines and "set --" makes the output of the awk script the current
argument list for the script (which means we can manipulate the output fields as $1,
$2, etc. and with the shift operator).
We then fire off a while loop which will pull off pairs of arguments from our new
argument list and operate on them. The while loop continues until all arguments
are exhausted.
Isn't shell scripting fun?

40

Building Each File System

echo "Creating $FS on device $DEV"

newfs $DEV </dev/null

mount DEV /aFS

FROOT=`echo $FS | sed 's/^\///' | sed 's/\//-/g'`

if [-f $CROOT/images/$SYS_IMAGE/$FROOT.dump.Z]

then

cd /a$FS

zcat $CROOT/images/$SYS_IMAGE/$FROOT.dump.Z | \

ufsrestore -rf -

rm -f restoresymtable

fi

echo ""

What we do inside of the while loop is essentially the same steps we used to restore
the root file system earlier: run newfs, mount the file system under /a, and then
use ufsrestore to pull back the "gold" image of the file system. Note that not
all file systems will have dump files associated with them (you might choose to
populate non-system directories like /usr/local or /home through some other
mechanism).

41

Clean Up Hosts Files

Files where the old host name appears:
/etc/nodename

/etc/hostname.*

/etc/inet/hosts

/etc/net/*/hosts

See notes for other potentially
"interesting" files to change…

A system's hostname appears in all of the files listed above (that's six total files
because there are three hosts files in directories under /etc/net). The system's
IP address appears in /etc/inet/hosts. The clone script needs to tweak all
of these files so that the new machine boots up with a different identity from the
"gold" image.
As part of the post-install process, you may also want to think about modifying the
/etc/defaultrouter, /etc/resolv.conf, /etc/inet/ntp.conf,
/etc/ssh_host*_key, and other similar files.

42

Partial Code Listing

set -- `netstat -in | awk \

'/^[a-z]*e0/ { printf("%s %s\n", $1, $4) }'`

PRIM_INT=$1

IPADDR=$2

echo "127.0.0.1 localhost" > /a/etc/inet/hosts

echo "$IPADDR $HOSTNAME loghost" \

>> /a/etc/inet/hosts

rm -f /a/etc/hostname.*

echo $HOSTNAME >/a/etc/hostname.$PRIM_INT

It's worthwhile to look at how the clone script goes about deducing and setting the
new system's network parameters.
The output of netstat –in looks like this:

netstat -in
Name Mtu Net/Dest Address …
lo0 8232 127.0.0.0 127.0.0.1 …
hme0 1500 10.66.0.0 10.66.2.6 …

The awk script matches any lines where the interface name ends in "e0" and
extracts the interface name (column 1) and the IP address (column 4).
If there were more than one ethernet interface on the system, we might have a
problem, but the Jumpstart generally only activates the system's primary network
interface (the interface on the primary CPU board on the system). If the system
does have multiple interfaces, you'll have to configure the extra devices as part of
the post-install process (or manually when the system reboots).

43

Wrap Up

Time to ask any final questions and review the URLs where you can find additional
information.

44

Those URLs Again…

Solaris Advanced Installation Guide
http://docs.sun.com:80/ab2/coll.214.7/SPARCINSTALL/@Ab2PageView/6302

Hal's jumpstart info page:
www.deer-run.com/~hal/jumpstart/

That URL for the Advanced Installation Guide again is:
http://docs.sun.com:80/ab2/coll.214.7/

SPARCINSTALL/@Ab2PageView/6302

(that's a single long line as far as your browser is concerned).

