
1

Running Unix Apps Securely – Unix Security Track

Network Time Protocol

All material in this section Copyright © Hal Pomeranz and Deer Run Associates, 
2000.  All rights reserved.

Hal Pomeranz * Founder/CEO * hal@deer-run.com
Deer Run Associates * PO Box 20370 * Oakland, CA 94620-0370
+1 510-339-7740 (voice) * +1 510-339-3941 (fax) 
http://www.deer-run.com/



2

Running Unix Apps Securely – Unix Security Track

NTP Topics

• Introduction

• How It Works

• Suggested Deployments

• Installation & Configuration Examples

• Final Thoughts

Introduction is a general overview of the Network Time Protocol including some 
historical perspectives.
How It Works provides insight on how NTP runs in the Internet environment and
introduces some terminology which will be used in the rest of the course.
Suggested Deployments covers high-level architectural issues common to most 
enterprise NTP configurations.
Installation and Configuration Examples includes not only actual NTP 
configuration files but also provides information on obtaining and building the 
Open Source version of NTP.
Final Thoughts includes some parting shots and some useful URLs.



3

Running Unix Apps Securely – Unix Security Track

Introduction

Introduction is a general overview of the Network Time Protocol including some 
historical perspectives.



4

Running Unix Apps Securely – Unix Security Track

NTP – What Is It?

• NTP allows networks of machines to 
keep system clocks in synch

• Can provide continuous (daemon 
mode) or occasional synchronization

• Resists injection of bogus information
• Supports mutual server authentication
• Works well with firewalls
• Requires little network bandwidth

NTP is the Internet standard time synchronization protocol.  The primary author and 
maintainer is David Mills at the University of Delaware.  The NTP code has been 
ported to a bewildering variety of Unix and non-Unix machines and is rigorously 
backwards compatible.
NTP can be run as a daemon which regularly polls a group of time servers and 
keeps the system clock in synch from moment to moment.  Accuracy to within 
hundredths of a second is standard.  The NTP distribution also comes with an
ntpdate program (similar to the BSD rdate program) which can be used on 
client machines at boot time or called every few hours out of cron to keep less 
critical machines in rough synchronization with the rest of the organization (a 
similar tool for Win32 machines is available for free from 
http://www.thinkman.com/dimension4/index.html).
When run in daemon mode, NTP is essentially its own proxy.  The usual 
configuration is to have the hosts on your external network synch with accurate 
clock sources on the Internet and then have your internal hosts synchronize off the 
hosts on your external network. 



5

Running Unix Apps Securely – Unix Security Track

NTP – Why You Care

• Log file timestamps
• Time-based security products:

– SecurID
– Kerberos (DCE)

• Distributed software devel (make)
• Being on time for meetings

Time synchronization is vitally important to your organization.
From a security perspective, effective prosecution of security incidents requires 
accurate matching timestamps on all log files.  Any discrepancies will complicate 
or sabotage legal proceedings.  There is also a reasonably large body of security 
software which requires accurate time information to work effectively.
If you are a software development organization, correct time information across 
your NFS servers and clients can make or break your development-- particularly if 
you use a parallel/distributed make product.



6

Running Unix Apps Securely – Unix Security Track

NTP – History and Naming

• NTP v0 documented RFC-958 (1985), 
development started as early as 1979

• NTP v3 generally referred to as "XNTP" 
to distinguish it from NTP v2

• NTP v3 (RFC-1305, 1992) is the current 
Internet standard, last released in 1998

• NTP v4 under development but stable

NTP v3 is the current Internet standard version of the protocol. When initially 
released in 1992, NTP v2 was still in heavy use particularly on PC platforms.  The 
v3 release was commonly called "XNTP" to distinguish it from v2 implementations.  
NTP v4 has gone back to just "NTP".
More info from a personal message from David Mills (5/2/2000):

"NTP version 0-4 were/are real and distinct. See rfc1305 appendix [D] for 
historic conformance statement. Versions 1, 2 and 3 were documented in
rfcs; version 4 is still wet. The reference implementations for 0-3 were on 
PDP11 fuzzballs. Later reference implementations for 3, 4 are in Unix. …
The original implementation which evolved to NTP was in the Hello routing 
algorithm used in the fuzzballs from 1979. It was documented in an early 
Internet Experiment Note circa 1981-3. I don't remember the exact rollout 
dates, but that doesn't matter much, since the architecture, protocol and 
algorithms evolved essentially in a continuous manner to the present day."



7

Running Unix Apps Securely – Unix Security Track

How It Works

How It Works provides insight on how NTP runs in the Internet environment and
introduces some terminology which will be used in the rest of the course.



8

Running Unix Apps Securely – Unix Security Track

Global Architecture

• NTP is distributed, hierarchical system
• Primary Servers are machines that are 

synchronized to external time sources
• Secondary Servers allow thousands of 

machines/organizations to synch 
without overloading primary servers

Like many other Internet-based distributed system, NTP is hierarchically-oriented.  
That is, there is a small core of primary time servers who set their clocks against 
external, highly accurate sources of time information (Cesium clocks, GPS 
receivers, etc.).   Below this level are secondary servers which are responsible for 
distributing time from the primary servers to the rest of the Internet. Secondary 
servers are required because, while a given NTP server can service hundreds (if not 
thousands) of other time servers, the number of machines requiring time 
synchronization on the Internet today numbers into the millions of machines.
As we will see later in the course, this hierarchical structure is continued as the NTP 
infrastructure permeates the individual organizations which are connected to the 
Internet– that is each organization synchronizes several tertiary servers to the 
publicly available secondary servers, and then proceeds to synchronize other hosts 
in their enterprise against these local tertiary machines.



9

Running Unix Apps Securely – Unix Security Track

Global Architecture (cont.)

Primary
Servers

Secondary
Servers

Company
Servers

Pictorially speaking, the Internet time hierarchy looks something like what is shown 
above.
At the top level are the relatively few (somewhere between 200 and 300) "publicly 
available" primary servers.  Each of these machines shares time information with 
several dozen secondary servers– there is some overlap, but there must be thousands 
of publicly available secondary servers on the Internet today.
Below the secondary server level are all of the organizations with direct Internet 
connections.  These organizations synchronize off the secondary server tier.



10

Running Unix Apps Securely – Unix Security Track

Terminology 

• Stratum -- How close a server is to a 
reliable source of time information
– Stratum 1 hosts synch from atomic/GPS 

clocks (i.e., are primary servers)
– Stratum 16 hosts are “disconnected”

• The stratum of a server is one plus the 
lowest stratum value of any server it is 
actively synching with

In other words, if your host is synching against one stratum 1 server and two 
stratum 2 servers, then your host is a stratum 2 server.  Stratum values are dynamic-
- if you suddenly lose connectivity to that stratum 1 server, then your stratum value 
will drop to 3.
Generally speaking, hosts will prefer time synchronization information from lower 
stratum hosts.



11

Running Unix Apps Securely – Unix Security Track

Terminology (cont.)

• Peer -- NTP peers share time info
• Server -- NTP server distributes 

time info, clients don't reciprocate

• Drift – Ongoing report of 
inaccuracy of system clock

NTP servers can either be configured in a peer-to-peer relationship or in a 
master/slave relationship.
A peer relationship implies that both parties are aware of each other’s existence and 
have the other machine configured in their local NTP configuration file.  However, 
in a master/slave relationship only the client configuration file needs to contain the 
server information, so the server may be unaware of the client’s existence until the 
client actually requests time information from the server (“pull” rather than “push”).  
Clients who take time synchronization information from a server without notifying 
that server’s administrator are generally referred to as clock suckers.
xntpd keeps moment to moment statistics on how much average variance the local 
clock has from the time standard.  This drift value is used to keep the system clock 
accurate in the event of a network partition that causes the host to lose time synch 
information.  Once the drift value has been accurately estimated, xntpd is capable 
of keeping VERY accurate time even without external clock information.



12

Running Unix Apps Securely – Unix Security Track

Timing Attacks

• An attacker may want to skew clocks 
by impersonating external NTP sources

• If you only synch time from one source 
then the attacker wins!

• Multiple external clock sources allow 
the NTP server to throw out bogus info

One of the problems with your security depending upon time information from an 
external source is that a knowledgeable attacker may try to impersonate your 
external time source and skew your machine's clock.  Success may allow the 
attacker to replay time-based security credentials against your infrastructure.
NTP has built-in algorithms for detecting and ignoring obviously bogus time 
information.  For these to be effective, however, your server must be receiving 
updates from more than one external clock source…



13

Running Unix Apps Securely – Unix Security Track

Detecting Bogus Timers

Source #1

Source #2

Source #3

Source #4

Time
Variance

Discard all non-intersecting time sources!

Let's say your local NTP server is getting time information from four external 
sources.  Each source reports their notion of the current time (represented by the 
dots in the picture above) and your local NTP server is able to calculate a maximal 
error threshold for each time source, which gives a small range of potentially 
"correct" time values (represented by the arrowed lines).
It turns out that the actual time must lie somewhere in the intersection of the ranges 
reported by the various time sources.  Your local NTP server searches for the largest 
group of intersecting time ranges from all of its potential time sources and then sets 
the time based on the information from those intersecting servers.
In the example shown above, sources #1, #2, and #4 all intersect to varying degrees 
so these are valid clock sources (true chimers).  Source #3 is reporting time outside 
of the range of any of the other servers, so it is invalid (a false ticker)– this may be 
because source #3 has been compromised by an attacker, or it may just be that 
source #3 has a terrible system clock or is getting time from some other wildly 
inaccurate time source.



14

Running Unix Apps Securely – Unix Security Track

Suggested Deployments

Suggested Deployments covers high-level architectural issues common to most 
enterprise NTP configurations.



15

Running Unix Apps Securely – Unix Security Track

NTP -- Typical Architecture

• Choose three Internet connected 
machines as central time servers 

• Each of these machines should synch 
from different Internet time servers

• These machines peer with each other
• Other internal servers peer with these 

machines (and each other)
• Clients get time from local servers

Again we see the hierarchical nature of good NTP architectural design.  The idea is 
to avoid overloading low stratum servers and to keep hosts from having to leave 
their local LANs for time synchronization information.  This is particularly 
important over WAN links.
Desktop clients should probably never peer with other machines, and it may be 
sufficient to simply use ntpdate to keep desktop machines in synch.
A list of accurate Internet clock sources is provided on the NTP Web site (URL at 
the end of this course).



16

Running Unix Apps Securely – Unix Security Track

External Time Synch Arch

Here's a simple diagram showing how an organization with a single Internet feed 
might get good external time information from the Internet.  
Three (or possibly more) local servers are deployed on some externally connected 
network.  Each of these machines is synchronized against a least three external 
secondary servers (there are three local servers in the picture above, so nine external 
secondary servers are required).  Each of the local servers also peers with the other 
two local machines.
Note that not all lines representing the complete set of master/slave and peer-to-peer 
relationships are drawn in the diagram above– this was done in order to make the 
picture less cluttered.



17

Running Unix Apps Securely – Unix Security Track

Internal Time Synch Arch

Now let's suppose that this same organization happens to have three distinct 
organizational units with various LAN and WAN connections between them.  Each 
of these organizations also has one or more local NTP servers.
Each of the NTP servers in each of the different organizational units will peer with 
all of the other internal NTP servers.  These internal servers will also peer with the 
servers which are getting time information from the external Internet.  For large 
organizations, you may wish to configure this as a master/slave relationship rather 
than peer-to-peer.



18

Running Unix Apps Securely – Unix Security Track

NTP – Pseudo Clocks

• NTP allows admins to define pseudo 
clocks for redundancy

• Pseudo clock causes server to 
synchronize to its own system clock

• Pseudo clock stratum can be specified

Use pseudo clocks
at critical points in your mesh!

There will come a time when your Internet gateway or other WAN link will go 
down and all of your local time servers will suddenly drop to stratum 16 and their 
clients will stop listening to time synchronization information. A few carefully 
located pseudo clocks will prevent this from happening.
Generally speaking, each of your locations should have at least one master time 
source with a pseudo-clock definition.  Having several pseudo-clocks per site will 
prevent a single machine with an inaccurate system clock from distorting your 
network time.  
You must be careful, however, to set the stratum of your pseudo-clock at least a 
couple of points higher than the stratum that the server usually operates at– this 
prevents the pseudo-clock from interfering with the information that you're 
acquiring from the Internet.  This means that pseudo-clocks should generally be 
configured at strata 5-8.



19

Running Unix Apps Securely – Unix Security Track

Internal Time Synch Redux

Here's our internal network architecture diagram again, this time showing 
appropriate stratum values for the various internal and external pseudo-clocks.  The 
pseudo-clocks on the "Outside Servers" should be configured at stratum 5– this 
means that if the Internet connection becomes severed then the "Outside Servers" 
will become stratum 6 servers (the stratum of the pseudo-clock plus one). 
This implies that the internal time servers will drop to stratum 7 when the Internet 
link is lost.  Therefore, configure the pseudo-clocks on these internal machines at 
stratum 8 so that the internal machines will only synchronize off of these clocks if 
they lose their connectivity to the rest of the company.



20

Running Unix Apps Securely – Unix Security Track

Network Time Synch

• Large organizations sometimes prefer 
to use network routers as NTP servers

• PRO: "predictable address", networks 
often a centrally-managed resource

• CON: routers may be overloaded, 
global config updates more difficult

Most almost every router on the market today is capable of being an NTP server.  
Many organizations choose to simply use their router infrastructure to supply time 
to their entire enterprise.
This often works well because network administration is usually a centralized 
corporate function and so time synchronization can be provided reasonably 
seamlessly throughout the entire organization.  Also routers typically appear at a 
"predictable" address on a given LAN (often the .1 or .254 address) and so 
machines can build their own NTP configuration files "on the fly" at boot time to 
simply synchronize against their default router.
On the minus side, your routers may already be too overloaded to be providing 
timing information to all of the locally attached hosts.  The router also becomes an 
even larger single point of failure for your LAN.  Also, it's typically easier to do 
global updates to host-based configuration files (using tools like rdist and 
rsync) than it is to update the configurations on a network full of routers.



21

Running Unix Apps Securely – Unix Security Track

A Word About Broadcast Time

• NTP servers can be configured to 
"broadcast" time info to local clients

• Accuracy is usually poor
• Savings on network traffic is usually 

not that significant

Avoid using broadcast!

NTP allows servers to broadcast time information to local clients (rather than 
having the local clients continuously synchronizing against one or more central 
servers).  This can save some network bandwidth, though NTP is generally such a 
lightweight protocol that the savings is negligible.
The problem is that broadcasts are inherently unreliable– a client may regularly 
miss the broadcast updates and its clock may being to drift off true.  Also, the client 
may be unable to accurately determine the delay between server and client, again 
resulting in inaccurate time on your client machines.
On the whole, the savings in network bandwidth (especially on modern switched 
network fabrics) don't seem to outweigh the disadvantages in using broadcast time 
synchronization.



22

Running Unix Apps Securely – Unix Security Track

Installation and Configuration

Installation and Configuration Examples includes not only actual NTP 
configuration files but also provides information on obtaining and building the 
Open Source version of NTP.



23

Running Unix Apps Securely – Unix Security Track

NTP -- Build process

• Get NTP source code
ftp.udel.edu

/pub/ntp/ntp3/xntp3-x.x.tar.gz
/pub/ntp/ntp4/ntp-4.x.x.tar.gz

• Includes GNU configure script

Note that it may be unnecessary to build NTP from source– most vendor-supplied 
operating systems now include NTP v3 with the base OS.
The build process for the Open Source NTP distribution is extremely easy thanks to 
a GNU configure script and significant effort on the part of the NTP porting 
community.  Once the configure script is completed, the administrator need only 
run make and then make install.
By default NTP will install itself under /usr/local.  The administrator may 
change this path by specifying --prefix on the configure command line:

configure --prefix=/opt/ntp



24

Running Unix Apps Securely – Unix Security Track

NTP -- Build process (cont.)

• Files you need
xntpd -- time synchronizing daemon
xntpdc -- administrative interface

• Other useful files
ntpdate -- like rdate but uses NTP protocol
tickadj -- sets kernel values (BSD systems)

The xntpdc program allows the administrator to interrogate running NTP servers 
for statistical information and current values such as how much variance there is 
between the local server and the hosts it is synchronizing against.  The xntpdc
program allows the administrator to query NTP servers on other hosts, including 
hosts at other organizations!  Try the command xntpdc –p <host> to get 
information about which machines a given <host> is synchronizing with.
tickadj is used to modify various kernel parameters which control features like 
the granularity of the system clock.  This program is not required for SYSV based 
systems.



25

Running Unix Apps Securely – Unix Security Track

dosynctodr and Solaris

• Solaris NTP users were advised to set
dosynctodr=0 in /etc/system

• In Solaris 2.6, the semantics of 
dosynctodr were exactly reversed

• DO NOT  set dosynctodr if you are 
running Solaris 2.6 or later

One of the kernel parameters set by the tickadj program on BSD systems is the 
value of dosynctodr– this parameter controls the relationship between the 
system hardware clock and the system software clock.  This parameter sometimes 
needs to be tweaked on SYSV-based systems as well, but there has been some 
historical confusion about whether this is necessary under Solaris.
From Sun's "Symptoms and Resolutions Database", SRDB #19195:

The common lore for setting up xntpd on Solaris using the freeware 
version included the warning to set the kernel variable dosynctodr to 0 
in the /etc/system file thus: set dosynctodr=0

When using NTP on Solaris 2.6 or later, the kernel variable MUST be left at 
the default value of 1. Prior to 2.6 this variable controlled whether or not to 
rein in the soft clock using the hardware clock, with the result that NTP and 
the hardware clock would fight for control of the soft clock; thus before 2.6 
you had to set dosynctodr to 0. At 2.6, every system call that adjusts the 
soft clock also sets the hard clock, thus while NTP controls the soft clock, 
the hard clock is also controlled. Setting dosynctodr to 0 reverts the 
behavior back to the pre 2.6 default behavior, having exactly the opposite 
effect as that intended. 
Do not set dosynctodr to 0. 



26

Running Unix Apps Securely – Unix Security Track

NTP Startup Script
CONFFILE=/etc/ntp.conf

if [ -f $CONFFILE ]; then

if [ -x /usr/local/bin/ntpdate ]; then
SERVERS=`awk '/^server|peer/ { print $2 }' \

$CONFFILE | grep –v ^127`

/usr/local/bin/ntpdate $SERVERS

fi

if [ -x /usr/local/bin/xntpd ]; then

echo "Starting NTP."
/usr/local/bin/xntpd -c $CONFFILE

fi

fi

Here is a snippet of shell code which can be used to start up the NTP v3 daemon on 
a Unix machine.  Change the pathnames in the script to suit your local installation, 
and if you're using NTP v4 change xntpd to ntpd.
Note that the script first calls ntpdate before starting the NTP daemon.  If your 
system clock differs too wildly from your external clock sources (for example, after 
the machine has just been booted for the first time) then your NTP daemon will 
refuse to synchronize at all.  The ntpdate call jumps your clock to something 
approaching the true time and then the NTP daemon will keep your machine 
chiming away happily.
It turns out that there is an undocumented –g flag for xntpd which will cause the 
daemon to synchronize the system clock no matter how far out of synch it may be.  
You could use this option as an alternative to the ntpdate call, but since the flag 
is undocumented it may disappear in future releases.  Thanks to Bob Laughlin 
(bel@spawar.navy.mil) for pointing this option out.



27

Running Unix Apps Securely – Unix Security Track

ntp.conf – external machine

driftfile /etc/ntp.drift

server 127.127.1.1

fudge 127.127.1.1 stratum 5

server 128.115.14.97 # clock.llnl.gov

server 128.4.1.20 # pogo.udel.edu

server 192.43.244.9 # ncar.ucar.edu

peer 207.102.198.67

peer 207.102.198.68

Here is an appropriate configuration file for one of the "Outside Servers" which gets 
timing information from the external Internet and disseminates it into your internal 
organization.
The driftfile directive specifies the full pathname of the file where NTP 
should store data on how much the local system clock tends to drift away from 
accurate network time.  Drift information is written to a file so that your machine 
doesn't have to start re-calculating this quantity from scratch every time your 
system reboots.
The next two lines define a pseudo-clock at stratum 5– we use a relatively low 
stratum number since this machine will be at the root of the time hierarchy for your 
organization.  The magic IP address 127.127.1.x causes NTP to load the 
pseudo-clock "driver" (other bogus 127.127.x.x addresses load drivers for other 
clocks, like GPS receivers and Cesium clocks), and the last octet specifies that this 
is the first instance of the given driver (theoretically a given machine might have 
multiple instances of a given clock attached, though this is rare).
Next we peer with three external secondary time servers.  Again, please don't be a 
clock sucker– contact the administrator of each external server before writing your 
configuration file.
The last two lines cause this server to peer with the other two local "Outside 
Servers".



28

Running Unix Apps Securely – Unix Security Track

ntp.conf – external machine (cont.)

restrict default ignore

restrict 128.115.14.97 nomodify noquery

restrict 128.4.1.20 nomodify noquery

restrict 192.43.244.9 nomodify noquery

restrict 207.102.198.67 nomodify noquery

restrict 207.102.198.68 nomodify noquery

restrict 172.16.0.0 mask 255.255.0.0 nomodify

restrict 127.0.0.1 nomodify

The ntp.conf file also allows the administrator to configure which machines get 
various levels of access to the local server.  It is particularly important to configure 
strong access controls on NTP servers which are accessible from the outside world.
Here we define a default security policy that all NTP protocol messages from all 
machines are ignored.  This means that by default no machine can synchronize 
time with the local machine and that all administrative requests and requests for 
information are ignored.
With that default policy, we then configure specific exceptions for hosts we need to 
communicate with.  In particular, we need to be able to synchronize time with our 
external time sources and peers but those machines should not be able to modify our 
running configuration, nor should they be able to query the local server for 
information (in case those external servers are compromised, we don't wish to give 
away additional information to the attacker).  We do want to allow administrators 
on our internal 172.16.0.0 networks to be able to query the local server (so they can 
debug problems), but nobody should be able to perform remote reconfiguration.  
Similarly, we allow and administrator on the local machine to get information but 
not to perform run-time modifications (since an external attacker could theoretically 
spoof messages from the 127.0.0.1 address).



29

Running Unix Apps Securely – Unix Security Track

ntp.conf – internal machine
driftfile /etc/ntp.drift

server 127.127.1.1

fudge 127.127.1.1 stratum 8

server 207.102.198.66

server 207.102.198.67

server 207.102.198.68

peer 172.16.1.1

peer 172.16.1.2

peer 172.16.3.1

restrict default nomodify

This is a typical configuration file for one of the internal servers in our example.  
The host is in a master/slave relationship with  the "Outside Servers" and peers with 
other internal time servers.  We configure a pseudo clock at a relatively high 
stratum value, just in case we lose connectivity to all other internal and external 
time sources.
Note that we use a less restrictive default security policy internally.  We use this 
less restrictive configuration assuming that the firewalls for the organization 
prevent external hosts from injecting NTP traffic onto our internal networks.  In a 
more open network environment, it may be advisable to use a more restrictive (and 
therefore more complicated) set of access controls.



30

Running Unix Apps Securely – Unix Security Track

ntp.conf – client machine
driftfile /etc/ntp.drift

server 172.16.1.1

server 172.16.1.2

server 172.16.3.1

restrict default nomodify

Finally, here's a configuration file that might appear on one of the client machines.  
The client simply sucks clock from one or more internal time servers.  Again we use 
a fairly unrestrictive access control configuration, assuming that we're protected by 
our organization's firewalls.



31

Running Unix Apps Securely – Unix Security Track

Final Thoughts

Accurate, enterprise-wide time synchronization is vital to the security of your 
organization– both in terms of internal analysis of security data from event logs and 
other information sources, as well as when you wish to prosecute computer crime 
cases.  Given that NTP is a free and open standard, plus the fact that most modern 
operating systems already include NTP support, there is no (technical) reason not to 
enable NTP across your whole organization.



32

Running Unix Apps Securely – Unix Security Track

Getting Accurate Time Info

• Ask your co-location provider

• Buy a GPS unit and roll your own

• Buy a commercial stratum 1 server
http://www.truetime.com/

If you are concerned with the accuracy of your organization’s time information 
(e.g., if you are in a financial environment or make heavy use of Kerberos) you may 
wish to invest in an accurate clock source of your own.  
Hosting and co-location providers often include reliable time servers as part of their 
service offering, so contact their Network Operations Center or your account rep for 
more information.
Alternatively, RS-232 compatible GPS clocks cost less than $1000 and drivers for 
common brands are included in the NTP distribution.  A cheap PC running Linux 
and a little administrative hocus-pocus can give you a stratum 1 server relatively 
easily.
If you can't afford the time to "roll your own", there are companies which sell fully-
integrated stratum 1 servers in the $3000-$4000 price range.  Essentially these are 
"black boxes" which contain a Cesium or GPS clock, an ethernet interface, and 
enough of an operating system to run an NTP server.



33

Running Unix Apps Securely – Unix Security Track

Useful URLs

• The root of all knowledge
http://www.ntp.org/

• Overview Doc ("Executive Summary")
http://www.eecis.udel.edu/~ntp/ntp_spool/html/exec.htm

• List of public NTP servers
http://www.eecis.udel.edu/~mills/ntp/servers.htm

The NTP.org server contains links to many, many useful documents.  In 
particular, Dave Mills' "Executive Summary" doc is a good overview of the issues 
surrounding networked time synchronization.  Also available on the NTP.org site 
is a list of publicly accessible stratum 2 servers (with administrative contact 
information).


